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Abstract—Time evolution of self-heating and current filamenta-
tion are discussed in this paper for shallow-trench-isolation (STI)-
type drained-enhanced n-channel metal-oxide-semiconductor
(DeNMOS) devices. A deeper insight toward regenerative n-p-n
action and its impact over various phases of filamentation and
the final thermal runaway is presented. A modified STI-type
DeNMOS device is proposed in order to achieve an improvement
(~2X) in the failure threshold (Ir-) and electrostatic discharge
(ESD) window (Vr2). The performance and filament behavior
of the standard device under charge-device-model-like ESD con-
ditions is also presented, which is further compared with the
proposed modified device.

Index Terms—Base push-out, charge device model (CDM), cur-
rent filamentation, drain-enhanced metal-oxide-semiconductor
(DeMOS), electrostatic discharge (ESD), human body model
(HBM), input—output (I/0), kirk effect, laterally diffused metal-
oxide—semiconductor (LDMOS), space charge build-up, thermal
runaway, transient interferometric mapping (TIM).

I. INTRODUCTION

WO-DIMENSIONAL technology computer-aided design

(TCAD) simulations are used by various groups [1]-[5]
in the past in order to model the electrostatic discharge (ESD)
behavior of various input—output (I/O) or ESD protection
devices. Since grounded gate n-channel MOS (NMOS, with
drain ballasting) and silicon-controlled-rectifierlike structures
fail purely due to excess temperature rise (at drain/anode) and
thermal runaway at very high transmission line pulse (TLP)
currents, their failure current can easily be predicted using 2-D
device simulation. However, we found that devices such as
drain-extended MOS (DeMOS, as discussed in Part I) or, in
general, devices that suffer from heavy charge modulation at
early currents cannot be modeled using 2-D device simulations.
As discussed in Part I, since the modeling for the ESD behavior
of drain-enhanced n-channel MOS (DeNMOS) device [6]-[8]
is normally based on 2-D simulations, it lacks the physical
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Fig. 1. DeNMOS device under study. Also shown is the one-sided structure
(simulated). The actual structure on silicon has folded geometry where the drain
(n-well) region is shared between two fingers.

insight required to predict the 3-D filamentation and failure.
Transient interferometric mapping (TIM) is another useful tool
for understanding the device behavior under the ESD stress
[9]. The TIM method monitors the temperature and free-carrier
concentration-induced changes through a change in the silicon
refractive index.

In this paper, we present a better understanding of various
phases of filamentation with a clear and correlated under-
standing of device failure during the ESD event. A clear and
correlated picture on the impact of base push-out, space charge
build-up, and regenerative n-p-n action over various phases of
filamentation and thermal runaway is presented. Furthermore,
we presented a modification in the device layout in order to
achieve an improvement (~2.5x) in the failure threshold (I72).
The CDM performance of various devices is also discussed.

This part of this paper is arranged as follows: failure mech-
anism and 3-D device modeling of the device is presented in
Section II, whereas Section III discusses the proposed (mod-
ified) device with ~2x improvement in failure threshold and
ESD window. Section IV compares the CDM performance of
standard and modified DeNMOS devices, whereas Section V
provides a summary.

II. FAILURE MECHANISM AND 3-D DEVICE MODELING

Before we start discussing 3-D device behavior, it is worth
pointing out the 3-D simulation approach. Fig. 1 shows a cross-
sectional view of a single-finger DeNMOS device. In order
to capture current filamentation, physical nonuniformity was
created across the device width. In the past, it was reported
that nonuniformity in the meshing (i.e., numerical nonunifor-
mity) along the width can easily capture current filamentation.
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Fig. 2. Current density (in amperes per square centimeter) at different times extracted from 3-D simulations (DL = 0.2 pm). The first filament starts shrinking
at the drain side because of temperature rise, which leads to a regenerative n-p-n action (due to the high fields after base push-out) that further causes a filament

shrink at source side.

However, this may lead to artifacts in the generated results;
hence, a “physical” nonuniformity along the width was created
for 3-D simulations in this work. The following are the different
ways for achieving a physical nonuniformity: 1) use source,
drain, and substrate contact strips with different lengths (in
the Z direction), i.e., nonuniform contact strips; 2) use mul-
tiple drain contacts with unequal spacing between them; and
3) terminate only one side of the device at STI. Furthermore,
in order to achieve proper thermal boundary conditions, we
extended the device boundaries by 5 um and defined 300 K of
thermal boundary condition at the surroundings of the device.
The extension was done in such a way that it does not affect the
electrical behavior of the device. We chose 5 pum since the ther-
mal diffusion (in Si) length for 100 ns (HBM) is 3.3 pum. Fig. 2
shows the 3-D distribution of current density inside the device
(i.e., along the device width at source and drain separately),
which shows a unique filament behavior for different times.
For shorter times, [Fig. 2(a), i.e., 25 ns], the device has almost
uniform current conduction across the device width. However,
for moderate times [Fig. 2(b), i.e., 50 ns], the current starts
confining at the drain side, which is the onset of filamentation.
Furthermore, at longer times [Fig. 2(c), i.e., 75 ns], the filament
is greatly confined at the drain side, and there is also an onset
of current localization at the source side. Finally, at 100 ns
[Fig. 2(d)], a very narrow filament was formed, at both the
source and the drain sides. It is worth mentioning at this point
that the current confinement (i.e., filamentation) at the drain
and source sides are indeed different events. First, the current
filamentation forms at the drain side due to the base push-out
and causes very high current densities and electric fields at the
front side of the device. (This can also be the back side of

the device, depending on the location of the current filament.)
High electric fields and temperature underneath the N* drain
diffusion, near the front (or back) side of the device, lead to
excess carrier generation (due to impact ionization and thermal
generation), which takes place nonuniformly across the device
width. These generated carriers (holes for a parasitic n-p-n
device) then flow through the substrate. The nonuniform nature
of hole distribution (across the device width) in the substrate
causes a nonuniform (i.e., local) triggering of the distributed
parasitic bipolar devices along the width of the device. Since
the number of holes greatly exceeds in the front (or back) side
of the device, the distributed bipolar in the front (or back) side
triggers strongly, which gives a better conductive path through
the front (or back) side of the device. This eventually turns off
the distributed parasitic bipolar across the rest of the device
width and leads to the onset of nonuniform current distribution
at the source side, which shows up as a filament shrink at the
source side. A strong turn-on of the distributed bipolar at the
front (or back) side or the turning off of the distributed bipolar
across the rest of the device width further confines the current
in a narrow region at the drain side, i.e., further filamentation.
These two processes eventually get coupled to each other (i.e.,
act like a positive feedback to each other) and lead to a very
fast filamentation and failure. We call this coupled mechanism a
regenerative n-p-n triggering or action. It is also worth pointing
out that 1) the depth of snapback is strongly connected with the
strength of regenerative n-p-n action, which essentially depends
on the width of the device, and a device with higher width
will result in higher current density inside the filament, which
will eventually cause a stronger regenerative n-p-n action, i.e.,
producing a deeper snapback, and 2) the rate at which these two
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Fig. 3. Hole current and maximum temperature at different current levels,
extracted from 2-D and 3-D simulations. Three-dimensional simulations for
lower currents and 2-D simulations show the absence of regenerative n-p-n
action, whereas the regenerative n-p-n action is clear for higher currents
(beyond the onset of base push-out 3-D) because of an exponential rise in
the hole current. The various phases of filament formation are also described
(1: onset of base push-out and space charge build-up, 2: onset of filamentation
because of high temperature, 3: filamentation causing temperature rise, which
starts a regenerative n-p-n action, 4: device failure because of thermal and
regenerative-n-p-n-based filamentation).

processes becomes coupled is a current (i.e., I7r,p)-dependent
phenomenon. In other words, the higher the stress current, the
earlier (with respect to time) the onset of regenerative n-p-n
action and device failure.

Fig. 3 shows an exponential increase in the drain hole current
(extracted from TCAD simulations, at Itr,p ~ I72) at higher
times, which gives an indication of the presence of regenerative
n-p-n action.! The generated large hole current leads to a
stronger local turn-on of the n-p-n, as previously discussed.
This regenerative n-p-n behavior was not observed in 2-D
simulations and was also not observed before the base push-
out in 3-D simulations, which further validates the previous
discussion on the current confinement at the drain and source
ends. We find that regenerative n-p-n action starts at a lattice
temperature higher than 1000 K, which itself is a sufficient
temperature for the formation of a current filament at the drain.

In summary, we find six unique filament behaviors at the
drain and source sides during 20-100 ns, considering a current
that is sufficient to cause base push-out, which finally leads to a
device failure.

1) Onset of the base push-out, which leads to a high space
charge buildup.

2) High energy storage in the space charge region and its
dissipation into silicon.

3) Heating, because of high fields after the base push-out,
leading to an onset of filamentation at the drain side.

4) Filamentation leading to further temperature rise.

5) Onset of regenerative carrier generation due to high elec-
trical fields and high current density in the filament.

'In the past, it was reported that the carrier heating in the high field region
influences the saturation drift velocity and enhances the impact ionization.
This causes higher impact-ionization-generated carriers, which flow (holes for
parasitic n-p-n) through the substrate. Excess holes in the substrate trigger
the parasitic n-p-n device faster, causing a deeper snapback. This type of
regenerative carrier generation and bipolar triggering was named regenerative
NPN action. Furthermore, the deep snapback leads to a short circuit power
dissipation, which was reported as the dominant cause of second breakdown

(61, [71.
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6) Further enhancement of heating at drain diffusion be-
cause of filament shrink at the drain side that causes a
regenerative n-p-n action. The regenerative n-p-n action
shrinks the filament at the source side. These two mech-
anisms work together and act like a positive feedback to
each other. This leads to a fast temperature rise within a
short time (Fig. 3).

7) Device failure because filamentation based on thermal
and regenerative n-p-n.

Even though the regenerative n-p-n action was observed, the
dominant mechanism for device failure is exceeding the melting
temperature. The regenerative n-p-n action only acts as an extra
positive feedback after the onset of filamentation, which causes
shrinking of current filament at the source side, leading to a
rapid confinement of the current filament during short time
scales.

Fig. 4 shows the lattice temperature at different times ex-
tracted from 3-D simulations, which validates the location of
hot spot and failure due to excessive temperature, as observed
in the scanning-electron-microscope image (shown in Fig 3 of
Part I). Fig. 4 shows that the hot spot always sits underneath
the N+ drain diffusion, which is due to a very high electrical
field underneath the drain diffusion after the onset of base
push-out. Initially, temperature rises uniformly across the 3-D
plane, whereas, after the onset of filamentation at the drain
side, it rises even faster [compared to 2-D simulation results,
Fig. 3]. STI in the vicinity of the hot spot further degrades
the heat flux, leading to a faster temperature rise, causing a
sufficient temperature at the drain side for strong filamentation.
Finally, regenerative n-p-n action causes an exponential rise in
temperature, which leads to a device failure.

III. FURTHER IMPROVEMENT IN FAILURE THRESHOLD

In Part I [10], we have also seen (Fig. 5) improvement in fail-
ure threshold by extending n drain diffusion (DL = 2.2 ym)
and drain contact (no change in ballast resistance) all over the
drain diffusion. Increasing the diffusion area (increasing DL)
leads to a lower carrier density in the n-well region underneath
the drain diffusion (Fig. 5). Reduction of carrier density in n-
well shifts the onset of base push-out to higher currents. Since
there is no base push-out before device failure, the high field is
located at the well junction, which is much lower than the peak
electrical field under the drain contact (n™) of a device showing
base push-out (for DL = 0.2 pm). This behavior is discussed in
more detail in the next section.

Fig. 5 shows the (a) current density, (b) electric field, and
(c) impact ionization contours for a modified device (DL =
2.2 pm) at a higher TLP current (i.e., 2 mA/um). The mod-
ified device fails at 2.5 mA/um [10], whereas, from Fig. 5,
an efficient bipolar triggering is evident, without any device
failure. Furthermore, Fig. 5(a) shows relaxed current density
(or carrier density) underneath the drain diffusion, compared to
the standard device (Fig. 7(b) for Part I and Fig. 2 for Part II).
The relaxation in carrier density is attributed to an increased
volume of the n-well region. The relaxed carrier density pushes
the onset of base push-out to a higher TLP current, which is
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Fig.5. (a) Current density (in amperes per square centimeter). (b) Electric field (in volts per centimeter). (c) Impact ionization (cm~3 s~1) contours for modified

device (DL = 2.2 pm) at It,p = 2 mA/pm.

evident from the absence of base push-out [Fig. 5(b)]. Since the
base push-out is not present in the modified device, the device
experiences a significantly relaxed electric field underneath the
drain diffusion, whereas the peak electric field was observed
at the n-well/p-well junction. This helps the device in two
ways: 1) relaxed heating: the peak electric field and, eventually,
the hot spot exists at the n-well/p-well junction, which leads
to a relaxed heating (J.E) due to lower current density (J)
and E-Field (E) at n-well/p-well, compared to J and E un-
derneath the drain diffusion for a device with DL = 0.2 pm.
Furthermore, the hot spot at the well junction has a higher Si
volume for heat diffusion, which enhances the heat flux and
eventually improves the device cooling during the ESD stress.
2) efficiently triggered bipolar: peak E-Field and, eventu-
ally, the peak impact ionization occurs at the well junction
[Fig. 5(c)], and therefore, the effective base length does not
degrade at higher currents, unlike the standard device. This
further keeps the bipolar triggered efficiently, which eventually
improves the turn-on capability of the device, i.e., reduces the

ON-resistance, which is evident from the TLP characteristics of
the modified device (Fig. 4, Part-I).

Fig. 6 depicts the filament behavior of a device having a
larger DL. Fig. 7 shows that, initially, the heating takes place
at the well junction, which was quite relaxed, compared to the
case of DL = 0.2 um (i.e., the device having base push-out)
because of less electric fields and less current density. Fig. 8
compares the maximum temperature and hole current in both
the devices at failure current. Because of the absence of base
push-out and regenerative n-p-n action, the device with larger
DL exhibits a smoother increase in temperature until failure. At
high temperatures, only an extended filament is formed at the
drain side (Fig. 6) because of lack of regenerative n-p-n action.
At the source, a uniform current distribution is found for the
simulated device. Due to a reduced current confinement in the
filament, a higher I was achieved.

The device intrinsic performance, i.e., Ron (ON-resistance),
Vip (breakdown voltage), C'g (gate capacitance), and Cpp
(drain capacitance), was found unchanged for the DL = 2.2 um
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case, so no loss of mixed signal/RF performance of the device
is observed when used in 1/O circuits. Furthermore, we found
that DL = 0.6 pm is sufficient enough to shift the onset of base
push-out to higher currents in order to achieve high I values.

IV. CDM PERFORMANCE

Fig. 9 shows the pulsed /-V (or quasi-static TLP) charac-
teristics of the standard and modified STI DeNMOS devices
(i.e., DL=0.2 pgm and DL = 2.2 pm). The rise time and
pulsewidth used for very fast TLP simulations were 250 ps and
5 ns, respectively, whereas the extraction of -V data for TLP

Lattice temperature (in Kelvin) at different times extracted from 3-D simulations (DL = 2.2 pum).

characteristic is done by averaging the transient voltage and
temperature data (w.r.t. time) between 3 and 5 ns. The following
points can be concluded from Fig. 9: 1) The modified device has
better bipolar-driven snapback, even under the fast transients.
This behavior is similar to the HBM case. This also validates
that the parasitic bipolar triggering is a faster event, compared
to “current filamentation” or “thermal failure.” 2) The modified
device shows lower ON-resistance at lower current densities
similar to the HBM case, whereas, at higher current densities,
the R,, of the standard device is much smaller. 3) Both the
devices survive much higher currents, compared to HBM. This
behavior is attributed to a lower self heating due to smaller time

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 04,2022 at 06:03:23 UTC from IEEE Xplore. Restrictions apply.



2248

1800 T—==pr=0.2um (1 2mALm) 1m &
o —o— DL=2.2um(2.5mA/um) <
< 1500 2 =
g
® 1200 3
3 in
£ "o

900
© =
8 600 ‘ L

! 3D Simulation 7]

300 AL . —1f &

0.0 30.0n  60.0n  90.0n
Time (sec)

Fig. 8. Hole current and maximum temperature at the failure current level of
the device having base push-out (DL = 0.2 xm) and no base push-out (DL =
2.2 pm) before filamentation (1: time at which the maximum temperature
and hole current are the same for both devices, 2: regenerative n-p-n action
leading to fast formation of filament, 3: absence of base push-out causing lower
electric fields, which leads to lower impact-ionization-generated holes). Since
hole current is negligible, there is no regenerative n-p-n action.

Drain Current: Iy, , (mA/um)

4

1.2 3 5
I p (MALIM)

0
20 Time Period : 5ns
10 15 20 25 30 35
Drain Voltage: V, , (Volts)

Fig. 9. Simulated (3-D) very fast TLP (CDM) characteristics of DeNMOS
device having different drain diffusion lengths (DLs).

scales, which also validates that the parasitic bipolar triggering
or regenerative n-p-n action is not the dominant cause of failure.
The STI DeNMOS fails because of excess heating at the drain
side. 4) The standard STI DeNMOS device shows a soft base
push-out in contrast to the hard base push-out observed in
the HBM case. As discussed earlier, the base push-out is a
current (or carrier density)- and time-dependent phenomenon.
The space charge build-up underneath the drain diffusion due to
carrier modulation is limited due to the very short (i.e., CDM)
pulse duration, and therefore, a much higher current density
(i.e., Itp = 4—5 mA/um) is required for the base-push out.
5) The modified device shows a relaxed self heating due to the
absence of base push-out, as discussed earlier. 6) The modified
device provides a higher ESD window similar to the HBM case.

Fig. 10 shows the transient TLP characteristics for both
the structures at a TLP current of 5 mA/um. It can be seen
from this figure that 1) voltage overshoot is 30% higher in
the standard device (DL = 0.2 pum), which may lead to an
early failure due to gate oxide breakdown. 2) Both the devices
show a faster bipolar triggering, i.e., within 100 ps. 3) Standard
device shows a soft base-push-out-driven snapback. The onset
of this base push-out occurs at ~300 ps. 4) The modified device
shows a linear temperature rise during the 5-ns CDM stress,
whereas the standard device shows an exponential temperature
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Fig. 10. Transient characteristics of DENMOS devices having different drain
DLs under CDM condition, extracted from 3-D simulations.

rise in temperature after 3 ns. This is attributed to an excess
heating in the standard device, even at shorter time scales,
leading to a temperature higher than the critical temperature
(for thermal runaway, i.e., the onset of NDR), causing a current
filamentation and thermal failure.

Fig. 11 shows the 3-D contours of lattice temperature (K)
and current density (in amperes per square centimeter) for both
the devices at a TLP current of 5 mA /um. The figure validates
the conclusions drawn from Figs. 9 and 10. Furthermore, it
also shows that the hot spot location and filament behavior for
both the devices occur at a significantly higher current, which is
almost similar to the HBM case, except the current confinement
at the source side for the device with smaller DL. As discussed
earlier (for the HBM case), regenerative n-p-n triggering leads
to a filament shrink at the source side and causes a very fast
filamentation and failure. On the other hand, it is evident from
Fig. 11 that regenerative triggering is absent for the CDM case.
This is due to the fact that the coupling of filamentation at the
drain and source sides and a strong turn-on of a few distributed
bipolars are considered to be time-dependent phenomena. Since
the CDM time domain (5 ns) does not allow the processes to
both start and become coupled, the current shrink at the source
side is absent. This also causes a soft snapback for devices with
a smaller DL, whereas it was harder for the HBM case.

V. CONCLUSION

We have found that the onset of filamentation is caused
by the onset of space charge modulation under the HBM
condition, which is electrical in nature. After the onset of
filamentation, devices fail due to excess heating at the drain
side, i.e., electrothermal failure. On the other hand, the onset
of current filamentation under CDM conditions is purely due
to elevated temperatures at the drain side, i.e., a thermal failure.
The degree of confinement of the filament is strongly dependent
on the existence of a regenerative n-p-n action, i.e., excess
carrier generation under high E-fields at high temperatures. In a
DeMOS with smaller DL, a strong regenerative n-p-n triggering
is found to occur along with a base push-out or space charge
modulation, which results in a low It2 under HBM condition.
On the other hand, the significant space charge build-up and re-
generative triggering were absent during the CDM stress, which
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shows the time dependence of these new phenomena. Avoiding
the base push-out by decreasing the current density under the
drain diffusion increases the failure current significantly. This
can be achieved by choosing a sufficient length of the drain
diffusion area. Devices with a higher DL show improved It2
values and have been found to have a pure thermal failure due
to the absence of base push-out or conductivity modulation.
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