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Abstract—This paper presents the detailed physical
insights into the silicon-controlled rectifier (SCR) phenom-
ena in planar equivalent Fin SCR devices. The complexity
and roadblocks for SCR triggering in FinFET technology
are explored. Implication of contact silicidation on Fin SCR
turn-onis discussed in detail. Device design approaches are
discussed for efficient Fin-enabled SCRs. In this direction,
a novel contact engineering scheme in Fin technology is
disclosed for improved SCR action. Moreover, a novel Fin
SCR is presented, which offers area-efficient electrostatic
discharge current carrying capability.

Index Terms—Electrostatic discharge (ESD), FinFET,
on chip, silicon-controlled rectifier (SCR).

I. INTRODUCTION

T HAS been over seven years since FinFET-based com-

mercial products were first announced by semiconductor
industry. The tremendous pace of CMOS scaling and projected
short-channel performance requirements pushed FinFETs to
get into the mainstream, which are structurally designed to
have an efficient channel control to reduce the OFF-state
leakage [1] with least foot print and maximum ON-current per
unit area. While FinFETs enjoy lower silicon footprint, these
devices, however, become increasingly vulnerable toward
overvoltage, self-heating, and electrostatic discharge (ESD)
stress due to poorer heat dissipation when compared to its
planar counterpart. Having such a technology at disposal,
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designing wide variety of ESD protection devices has become
a major concern [2]-[5]. Reduced ESD design window for
FinFET and beyond FinFET technology have posed further
difficulty in developing ESD protection elements in FinFET
technology [6]-[12], causing Fin-based ICs to be increas-
ingly susceptible to ESD events [13]-[16]. This is one of
the reasons why FinFET technology is mostly filling the
high-performance computing and digital baseband-like product
needs, to begin with. Developing a system-on-chip is still
a long shot, attributed to missing variety of ESD protection
devices, beside high-voltage capability.

Silicon-controlled rectifiers (SCRs) have widely been used
as an efficient ESD protection device for low-voltage appli-
cations, owing to their low parasitic loading effects, relatively
smaller device footprint area, lower holding voltage, and faster
turn-ON [18]-[27]. With the principle of regenerative positive
feedback under ESD, such as high current injection event, SCR
stands as a desirable ESD protection element when compared
to ggnMOS or diodes. While often the fundamental concepts
for device designs are borrowed from its previous nodes,
adapting the planar-like conventional SCR design approach
for FinFET technology presents numerous design challen-
ges [28], [29]. It was reported that SCR device designs from
planar counterparts could not be borrowed successfully for
the Fin-based SCR devices due to the lack of reproducible
SCR-like action [29].

In this paper, fundamental roadblock and physical phe-
nomena associated with Fin-based SCR designs have been
studied using 3-D device TCAD. Furthermore, Section II
presents the physical insights into the missing SCR action
in FinFET technology. With the corresponding findings,
Section III discusses the design challenges and engineering
approaches toward efficient SCR mechanism. Having explored
the physical insights of fin-based bottlenecks and techniques
to redesign conventional Fin SCR (CFSCR), a novel dual-
Fin SCR (DFSCR) is introduced in Section IV, as an efficient
ESD protection element, which provides an area efficient
solution with a well-distributed current conduction mecha-
nism. Finally, Section V concludes the new findings and
proposed design rules for an efficient SCR for FinFET
technology.
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Fig. 1. (a) Planar equivalent of CFSCR. (b) TLP I~V characteristics of CFSCR, EFSCR, and proposed DFSCR. (c) Self-Heating: Lattice temperature
versus I p of CFSCR, EFSCR, and proposed DFSCR, extracted using 3-D TCAD simulations. Inset of (c) compares the ESD robustness (It2) of

the CFSCR with the proposed DFSCR and EFSCR, respectively [17].

II. FINFET SCRs: A BRIEF OUTLOOK

On account of a low holding voltage (Vhola), high
failure current (It2) and an excellent ON-resistance (Ron),
SCR devices serve as an efficient ESD protection element.
However, the translation of this planar-based SCR ESD
protection concept to FinFET technology presents many
design-specific challenges, which alters the ESD relevant
metrics of the SCR, such as snapback, low Vpgiq, desirable
It2, and Ron. Fig. 1(a) illustrates the schematic of the planar
equivalent CFSCR with the anode, cathode, and n/p triggering
taps/fins. The n+ or p+ fins are fully silicided at the fin
surface and are used to contact the n-/p-wells (base—collector
taps) with the respective emitters. Throughout this paper,
the number of fins used in n/p tap region is designed, such
that the number of N/P tap fins to anode/cathode fins (N)
ratio is 0.6. This ratio is considered to mimic the approximate
length ratio of n/p tap to anode/cathode length of that of
planar SCR, to have a conservative comparison. This design
is also compared with a 28-nm technology equivalent planar
SCR device, an engineered Fin SCR (EFSCR) device, and
a newly proposed DFSCR device. The idea behind EFSCR
and DFSCR architectures are revealed in later sections. It
is worth highlighting that Transmission Line Pulse (TLP)
I-V characteristics of various SCR devices explored in
this paper have been extracted using 3-D device TCAD
simulations [30]. The TCAD simulation deck for SCR is
well-calibrated with experimental FinFET results [31] using
appropriate fin aspect ratio and TCAD models, as explained in
our earlier works [32], [33]. To account for self-heating effects
under ESD stress condition, thermal boundary conditions
are taken into consideration, as reported in [34], beside
incorporating thermal resistance equivalent to back-end metal
interconnect and interlayer dielectric. State-of-the-art TLP
I-V extraction methodology was used with 100-ns pulsewidth
with increasing amplitude after each pulse with a rise time
of 10 ns. An averaging window of 60-80 ns was adopted to
extract the individual /-V points in the TLP /-V curve. The
failure criteria (It2) for all the devices were considered with
a conservative estimate of temperature exceeding 1200 K.
This is in accordance with an earlier failure analysis work
on FinFETs [3]. For all investigations, HrN, Hstr, and
Wrmn were considered to be 42, 70, and 8 nm, respectively.
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Fig. 2. (a) TLP /-V characteristics and (b) lattice temperature versus

ILp characteristics of fully silicided CFSCR as a function of number of
anode/cathode Fins (N).
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Fig. 3. (a) Total current density, (b) hole current density, and (c) elec-
tron current density across a fully silicided CFSCR, extracted at 50%
of It2 [17].

The anode/cathode/tap doping was chosen as 1 x 102! cm™3;

however, the p-/n-well doping was selected to be
5 x 10'"® cm™3. To encapsulate the real-time heat dissipation,
an equivalent thermal resistance of 1-um copper metal
was defined over the anode/cathode/tap terminals. All the
characteristics were extracted considering negligible contact
resistance due to the degenerate doping of the anode/cathode/
tap regions. Adding external contact resistance at the terminals
affects the Ron of the device without inducing significant
effect on the intrinsic device parasitics.
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planar equivalent Fin SCR. (b) Current gain (3) as a function of injected
collector current. (c) Emitter-to-base hole current ratio as a function of
pulsed collector current.
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Fig. 6. TLP I~V characteristics of CFSCR with varying (a) HC (JD = 0)
and (b) JD (HC = 0). Here, the number of anode/cathode fins, N = 20.

Fig. 1(b) depicts the simulated TLP I-V characteristics
of various SCR designs, briefly mentioned earlier. It depicts
absence of regenerative snapback in the CFSCR, which reveals
a missing SCR action leading to higher holding voltage and
a very low It2. In order to demonstrate a fair comparison
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Fig. 7. (a) Failure current (It2) and holding voltage (Vyoq) and
(b) turn-oN time (Ton) and voltage overshoot (Voyershoot) @s @ function
of spacing between contact silicidation and base—emitter junction (HC)
for JD = 0 nm. These trends were extracted at an injected stress current
equivalent to 90% of the respective It2.
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Fig.8. (a) Failure current (1t2) and holding voltage (Vq1q) and (b) turn-oN
time (Ton) and voltage overshoot (Voyershoot) @s @ function of diffusion
depth below active Fin (JD) for HC = 0 nm. These trends were extracted
at injected stress current equivalent to 90% of the respective It2.

between 2-D (planar) and 3-D nature of the various SCR
designs, the stress currents are normalized per unit layout area.
The following sections present the underlying phenomena
leading to the missing SCR action in conventional-/planar-
based Fin topology and ways to mitigate Fin-based SCR
design challenges. The corresponding findings are used to
reengineer the CFSCR design and propose a novel DFSCR
design [see Fig. 1(b)], providing a 13x improvement in layout
efficiency in terms of failure current per unit area, beside
significant improvement in holding voltage and ON-resistance
of these SCR devices.

[1l. FIN SCRs: DESIGN CHALLENGES
AND ENGINEERING

As discussed earlier, the CFSCR does not exhibit an SCR
action (or first snapback), as depicted in Fig. 1(b), which
is further elaborated in Fig. 2, as a function of number of
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anode/cathode fins (N). Fig. 2 demonstrates the TLP -V
characteristics of CFSCR with increasing N, and it can be seen
that, as N increases, the It2 per unit area lowers, and it does not
affect the SCR action. The possible explanation for this is the
weak parasitic bipolar, which can be attributed to an increased
emitter resistance due to the Fin shape or increased carrier
recombination in the base region due to relatively higher dop-
ing in FinFET’s n-/p-wells. However, detailed TCAD analysis
revealed that none of these were responsible for the missing
SCR action or weaker bipolar action in CFSCRs. Fig. 3(a)
shows the total conduction current density for CFSCR (con-
sidering N = 20), where the major current carrying regions
are anode and cathode terminals, which is consistent with
the traditional understanding of current transport across SCR
device [20]. Fig. 3(b) and (c) depicts the respective minority
carrier current conduction (electron and hole) across CFSCR.
It has been found that unlike in planar SCRs, a significant
portion of minority carrier current flows through the respective
cathode/anode contacts, which are the emitter contacts of the
Fin SCR, i.e., a significant hole current through the cathode
contact and an electron current through the anode contact.
This minority hole (electron) conduction through the parasitic
n-p-n (p-n-p) emitter contact is expected to dominate through
p (n)-Tap to trigger the SCR. The weaker bipolar action in
CFSCR can then be explained due to the significant loss
of minority carriers through the emitter contacts. The high
minority carrier conduction through emitter contacts is due to
fully silicided nature of Fins, which is elaborated in Fig. 4.
Fig. 4(a) shows single-Fin schematic, depicting parameters
contact height (HC) or junction depth (JD) to study the impact
of spacing between silicided portion of the Fin and base-
emitter junction. The HC is defined as the height from the base
of the fin, above which the fin is fully silicided. This refers
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Fig.11. (a) TLP I~V characteristics of CFSCR with the incorporation of a
conformal epitaxial silicon layer over the fins (shown in inset) as a function
of epi layer thickness (Tgp). (b) TLP -V characteristics of CFSCR with
conformal and diamond-s%aped epi-growth over the fins (shown in inset).

Fig. 12.  3-D architectural view of the proposed DFSCR design. The
active Fin regions consist of anode/cathode and n-/p-taps, which forms
a junction or contact with the respective n-/p-wells [17].

to contact silicidation from the base of the fin up to a desired
height. The JD can be defined as the diffusion depth of the
emitters, beneath the active region of the fin. In case of
conventional (fully silicided) Fin SCR, HC = 0 and JD = 0,
Fig. 4(b) depicts the gradual reduction in minority carrier
conduction through the emitter contact, as HC was increased
from 0 to 10 nm (keeping JD = 0 nm) or when JD was
increased from O to 10 nm (keeping HC = 0 nm). This is
plotted as a decrease in the minority hole current through
the emitter cathode contact for the n-p-n parasitic bipolar.
This is attributed to the minority carrier diffusion current [see
Fig. 4(c)], which is a strong function of the minority carrier
gradient between junction and the contact as
dp

Py ey
In theory, for HC = JD = 0, dx — 0 and, hence,
dp/dx — oo. Extrapolating this to the situation when contact
was placed next to the vertical junction in case of fully
silicided Fin, it resulted in significantly higher carrier gradient
[see Fig. 4(d)] and minority carrier conduction through emitter
(anode/cathode) contacts. This can also be observed from
Fig. 4(b), which depicted highest minority hole current through
the cathode (or emitter) for HC = 0 and JD = 0. This can be
relaxed by keeping the silicided region away from the junction,
either by increasing HC or by increasing JD, which is found

Jp=¢q.D
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of number of Fins (N) over the n-/p-wells in DFSCR. These trends were
extracted using 3-D TCAD simulation at injected stress current equivalent
to 90% of the respective It2.

to improve the parasitic bipolar action. Similar improvement
in bipolar efficiency for planar nMOS devices was earlier
experimentally validated with thin S/D salicides [16]. Fig. 5(a)
depicts a scheme using which, the efficiency of the parasitic
n-p-n bipolar was studied, where the anode contact was left
open, the p-tap and cathode were grounded and the n-tap
was stressed. It can be observed that as the spacing between
silicided portion of the Fin and base-emitter junction was
increased, the bipolar gain () was found to increase [see
Fig. 5(b)], which is attributed to the reduced emitter-to-base
hole current ratio [see Fig. 5(c)]. This results in an efficient
SCR action, which manifests as a deep snapback in the TLP
I-V characteristics, further illustrated in Fig. 6, where an SCR
action is clearly visible for HC > 2 nm or JD > 2 nm.
Similar improvement in the parasitic bipolar efficiency with
the increase in HC was observed for dc simulations, as well.
An important point to highlight here is that the SCR action
(or efficient bipolar action) for FinFET technology can be
improved by separating the contact (or silicide) from the
junction by either lifting the silicide up from the base of
the fin (increasing HC) or by diffusing the emitter deeper
(increasing JD).

Figs. 7 and 8 further depict the impact of contact separation
from the junction by increasing HC and JD, respectively,
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Fig. 15. TLP -V characteristics of DFSCR with varying (a) HC (JD = 0)
and (b) JD (HC = 0). Here, the number of anode/cathode fins, N = 1.
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on the ESD figure-of-merit parameters of SCR device, such
as It2, Vyold, turn-ON time (7on), and overshoot voltage
(Vovershoot)- The trends were extracted for injected stress
current equivalent to 90% of the respective It2. As HC or JD
was increased, SCR’s failure current and turn-ON time were
found to improve by an order of magnitude. Similarly, holding
voltage and voltage overshoot was found to scale by a factor
of 3 and 2, respectively, [VHola drops from 7 to 3 V, and
Vovershoot drops from 11 to 6.5 V in Fig. 8]. It should be
noted that normalized It2 per layout area drops and then
saturates after an optimum value of HC or JD = 10 nm. This is
attributed to the increased thermal resistance between S/D Fins
and contact with increase in HC and/or JD, which enhances
the lattice heating and resulting device failure. Given that most
of the thermal energy from FinFET channel is taken away by
the Back End of Line metallization via S/D contacts [35], any
change in contact scheme is prone to affect the self-heating
behavior of the FinFET devices. With increasing HC or JC,
the silicided region is moved away from hot spot, which adds
to the thermal resistance mentioned. Therefore, from Figs.
7 and 8, it can be stated that the CFSCR can be engineered
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Fig. 18. (a) Failure current (It2), holding voltage (VHoig), turn-ON time (Ton) and voltage overshoot (Vovershoot) @s @ function of (b) anode-to-cathode
spacing (Lac) and (c) anode/cathode diffusion length (Lg), as shown in Fig. 12, depicting improved design scalability for DFSCR. The respective
trends were extracted using 3-D TCAD simulation at an injected stress current equivalent to 90% of the respective It2.

with HC = 10 nm (keeping JD = 0 nm) or JD = 10 nm
(keeping HC = 0 nm) to offer optimum performance as an
SCR ESD protection device, which is termed as EFSCR device
in this paper. This value for the optimum HC and JD shall be
used in the subsequent investigations too.

Fig. 9 demonstrates the TLP characteristics for the EFSCR
with HC = 10 nm (JD = 0 nm) and with JD = 10 nm
(HC = 0 nm), as a function of number of anode/cathode
fins (N). With the contact and junction engineering scheme,
an efficient SCR action is evident from deep snapback in
the TLP /-V graph. It is also worth highlighting that the
EFSCR exhibits reduced failure current per layout area with
the increase in the number of anode/cathode fins. This is
because It2 per unit device width does not increase linearly
with increasing number of anode/cathode Fins, which is due
to nonuniform current contributions from anode/cathode Fins.
Fins that are close to well junction contribute to higher SCR
current, which falls as one moves away from well junction.
Attributed to this reduced current contribution while moving
away from junction, It2 per unit area falls beyond an optimum
value of 3 Fins. This trend is found to be similar to the CFSCR
devices, as depicted in Fig. 2. Fig. 10 further illustrates the
effect of the number of anode/cathode fins on the ESD relevant
metrics for the partially silicided Fin-SCR. It can be observed
that the turn-ON time and the overshoot characteristics do not
get affected with the increase in the number of anode/cathode
fins. However, the holding voltage (Vyolq) reaches a peak at
N = 10 and is seen to roll off at higher values of N. With the
increase in the number of fins, the current density drops, and
hence, it requires an increased number of minority carriers to
sustain the bipolar action, which leads to an increase in Vioq.
Furthermore, as the number of fins is increased, the emitter
junction area increases, which improves the emitter injection
efficiency and allows the bipolar action to be maintained
even at slightly lower holding voltages. Hence, the number
of anode/cathode Fins in FinFET SCRs can be used as a
design knob to tune the holding voltage, as per the design
requirement.

To summarize, so far we have shown that for efficient SCR
action in FinFET-based ESD protection devices, the efficiency
of the parasitic bipolar needs to be improved, which is
achieved by separating the contact silicide and the drain-
well junction. This was found to mitigate the minority carrier

7
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Fig. 19. (a) Anode voltage versus stress time for DFSCR, depicting

the extraction of Tpy. (b) Transient figure-of-merit comparison (Toyn and
Vovershoot) ©f EFSCR and DFSCR as a function of pulse rise time,
extracted for optimum JD. These trends were extracted using 3-D TCAD
simulation at an injected stress current equivalent to 90% of the
respective It2.

loss through the emitter contacts, which can be achieved
by either increasing HC (i.e., moving silicide region verti-
cally) or increasing JD (pushing the anode/cathode regions
deeper into the n-/p-wells). Fig. 11 proposes and depicts
another approach to disjoint the p-n junction from the silicide
by incorporating an epitaxial layer over the fins before the
metal silicidation process. With the epitaxial growth over the
fins, the contact silicidation at the base of the fin may not be
present. This phenomena act as a raised contact metallization
case. The epitaxial layer can be a conformal growth all
over the fins, leading to a rectangular epitaxy profile or a
diamond-like epitaxy over the fins. Fig. 11(a) depicts the TLP
I-V characteristics of the CFSCR with increasing thickness
of a conformal epitaxial layer of silicon (with thickness Tep;)
all over the active-fin region. As depicted, the SCR action
is improved with increasing epi thickness, attributed to the
physics explained earlier while increasing JD or HC. Fig. 11(b)
presents the TLP /-V comparison of CFSCR with confor-
mal and diamond-shaped epitaxy over the fins. It is worth
highlighting that no significant change is observed in the TLP
characteristics, which demonstrates the independence of the
behavior of the parasitic bipolar with the shape of the epitaxial
growth over the fins.

IV. NovEL DUAL FIN SCR

The previous section demonstrated the physical insights
and ways to overcome the challenges associated in designing
efficient FinFET SCR ESD protection devices. This section
presents a novel DFSCR design to further improve the layout
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Fig. 20. 3-D architectural view of (a) Flipped DFSCR with adjacent anode/cathode regions, (b) along the Fin-SCR, where the anode/cathode and
tap regions are placed on the same group of fins, and (c) and (d) TLP /-V and lattice temperature versus Fp characteristics of DFSCR, Flipped
version of DFSCR (or nondiagonal DFSCR), and along the Fin SCR, respectively.

efficiency of these protection elements. Fig. 12 depicts the
proposed DFSCR design, which consists of two groups of fins
separately placed in n- and p-wells. Here, each group may have
one or more number of Fins (N). n-/p-taps are placed on both
the sides of anode/cathode. Note that the anode and cathode
diffusions are intentionally placed diagonal to each other.
This permits uniform current spreading and, therefore, lowers
the current density for a given absolute anode-to-cathode
current, which further helps in relaxing the heat dissipation
across the device and improves failure current per unit area
[Fig. 1(b) and (c)] [17]. This is also depicted in Fig. 13, which
shows relaxed lattice temperature for DFSCR, as compared
to the CFSCR architecture. The proposed DFSCR device can
easily be used in cell-based geometry to minimize its overall
footprint.

Fig. 14 plots the ESD relevant parameters for SCR device
for DFSCR as a function of number of anode/cathode fins (N).
It shows that increasing number of Fins in a given group
improves the overall area efficiency of the device without
sacrificing the turn-ON or holding voltage characteristics.
Comparing with the optimum EFSCR [see Figs. 7 and 8],
the proposed DFSCR device offers 3x higher It2 per unit
area. The same concept for separating the contact from the
junction by increasing HC or JD can be implied in DFSCR.
Fig. 15 summarizes the TLP /-V results for DFSCR with
increasing HC and JD. As discussed in the previous section,
with the increase in the contact and junction separation,
the bipolar efficiency improves, leading to a snapback in
the I-V characteristics. This is attributed to the reduction
in the minority carrier current through the emitter regions.
Figs. 16 and 17 depict the variation of the ESD figure-of-merit
parameters with HC and JD, respectively. Similar to EFSCR,
the proposed DFSCR also exhibits improved SCR action when
HC and JD were increased above 2 nm, which validates
the design challenges and proposed solutions in the previous
section. However, unlike EFSCR, DFSCR with optimum JD
exhibits higher failure threshold than the same with optimum
HC, which validates the presence of efficient current spreading
in the proposed device compared to planar equivalent design.

Fig. 18 illustrates the design scalability of the proposed
DFSCR. Fig. 18(a) shows 20% improvement in failure cur-
rent per unit area when cathode diffusion length (Lg) was
increased by 4x. This can be achieved without sacrificing
transient performance, as depicted in Fig. 18(c). By scaling
the anode-to-cathode spacing (Lyc) by 4x, It2 per unit area

was found to improve by 3x with 25% reduction in holding
voltage, 25% reduction in voltage overshoot, and 2x faster
turn-ON. This was found to achieve without sacrificing the
OFF-state leakage. Similar design feasibility was missing in
the conventional designs. The transient performance metrics of
the EFSCR and DFSCR are compared as a function of pulse
rise time, for optimum JD, as depicted in Fig. 19. Here, the
turn-ON time (7py) is extracted as the time when the voltage
achieves a minimum holding state [see Fig. 19(a)]. DFSCR
offers lower voltage overshoot at shorter rise times (tr < 2 ns,
emulating the vf-TLP conditions), without compromising with
the turn-ON time, when compared to EFSCR. This is attributed
to the smaller design foot print area (lower capacitance) and
improved current-spreading characteristics in the proposed
DFSCR. Similar trends were also observed for optimum HC
design too. This affirms an area efficient ESD robustness of
DFSCR when compared to EFSCR.

So far, the planar SCR is compared with the Fin-based SCR
(EFSCR and DFSCR), where DFSCR depicts relaxed lattice
temperatures and higher ESD robustness. An obvious question
regarding this is whether the It2 improvement is due to the
diagonal placement of anode/cathode in DFSCR or some other
phenomenon. To quantify this, the TLP results with diagonally
placed anode/cathode contacts (see Fig. 12) are compared
with a Flipped version of DFSCR with anode/cathode regions
facing toward each other [see Fig. 20(a)] and an “Along the
Fin-SCR,” where the anode/cathode and the tap regions are
all placed along the same group of fins [see Fig. 20(b)]. The
TLP I-V and lattice temperature comparison of these variants
plotted in Fig. 20(c) and (d) clearly depict that while a diagonal
placement offers similar /-V characteristics as other variants,
the It2 for the case of diagonal DFSCR is 20% higher than the
other design architectures, attributed to relaxed self-heating,
depicted in Fig. 20(d). This difference is ascribed to the way
the majority current carrying regions are placed in the device.
In the Flipped DFSCR, the anode/cathode diffusions are placed
adjacent to each other; however, in the diagonal configuration,
the current effectively spreads across the entire active device,
thereby relaxing the lattice heating, which eventually leads to
increased ESD robustness of DFSCR.

V. CONCLUSION

In this paper, we revealed physical insights into the missing
SCR action in planar equivalent CFSCR devices. The funda-
mental reason for the weak parasitic bipolar and missing SCR
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action was found to be the excess minority carrier conduction
through the anode/cathode contacts in CFSCR device. This
was attributed to the fully silicided nature of the Fins, which
gives rise to minority carrier diffusion current through parasitic
bipolar’s emitter—base junction. This was avoided by: 1) push-
ing the silicided region away from the junction by introducing
partial silicidation (HC) or 2) pushing the junction away from
the silicided portion by introducing an SCR implant (JD). The
same can also be achieved by incorporating an epitaxial layer
of silicon grown over the emitter contacts. This resumed the
SCR action with significantly improved performance. Finally,
the novel DFSCR design is proposed, which allows uniform
current spreading, better design scalability, and relaxed heat
dissipation across the device. Attributed to this, the proposed
design offers 3x higher failure current per unit area and
35% lower voltage overshoot without compromising with turn-
ON time when compared to EFSCR device. This efficient
diagonal anode/cathode placement in DFSCR accounts for
20% increase in It2 when compared to other nondiagonal
Flipped DFSCR and along the Fin-SCR variants.
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