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Abstract—In this work, for the first time, we have used a 
matured graphene technology platform for ESD physics 
explorations while investigating implications of various design 
and technology options. Impact of diffusive vs. ballistic carrier 
transport and top-gate vs. back-gate on failure mechanism is 
investigated. A unique contact limited failure in graphene 
transistors is reported. Physical insights on current saturation in 
graphene FET and unique step by step failure in dielectric 
capped transistors is presented for the first time. Moreover, 
device degradation under ESD time scales and its implications 
on current saturation are revealed. Finally, influence of various 
top-gate designs on the ESD performance is reported. The new 
physical insight and matured graphene FET technology has 
enabled record high failure current. 
Index Terms— Graphene, Electrostatic Discharge, Chemical 
Vapor Deposition (CVD),  

I. INTRODUCTION  
 It’s been over a decade since Graphene is being explored 

as a channel material for THz applications [1]–[3], which is 
attributed to its extraordinary electrical and thermal properties 
[4]-[5]. However, it was very recent when long term and ESD 
reliability of graphene FETs received attention [6]-[8] which 
without exaggeration is at a nascent stage. This is attributed to 
(i) unavailability of high quality large area graphene in initial 
years, (ii) lack of matured technology and (iii) use of back-
gated geometries for explorations. For instance, ESD behavior  

 

 

 

 

 

 

 

 

 

 
 
 

of graphene was first reported [7] using the exfoliated 
material and more recently [8] using CVD graphene, both 
without a top-gate or dielectric passivation. In this work, for 
the first time, we have used a matured graphene technology 
platform with record performance [9] for ESD physics 
explorations while investigating implications of various 
design and technology options. 

II. GRAPHENE DEVICE FABRICATION & DESIGNS UNDER 
TEST  

High quality CVD grown Graphene on Cu (Fig. 1a) was 
transferred to Si/SiO2 substrate using PMMA based wet 
transfer technique, which was then patterned using electron 
beam lithography and O2 plasma. After contact engineering, 
source/drain (Pd) pads were deposited using UHV electron 
beam evaporation, followed by lift-off and high-temperature 
anneal. After a blanket atomic layer Al2O3 deposition and 
post-deposition anneal gate metal was deposited, followed by 
a post-metallization anneal. At last Al2O3 over S/D contact 
pads was removed using RIE. The developed technology has 
resulted in record high performance [9]. For ESD 
investigations following designs were fabricated with 
electrical width up to 40 mm: (i) back-gated graphene FET 
without top-dielectric capping, (ii) back-gated graphene FET 
with top-dielectric capping, and (iii) top-gated RF graphene 
FET with gate-to-S/D overlap or under-lap (Fig. 1). ESD 
events were emulated through a commercial TLP tester. 

 

 

 

 

 

 

 

 

 

 

III. CARRIER TRANSPORT AND RELATED FAILURE UNDER 
ESD CONDITION 

The electro-thermal transport during ESD event is 
investigated using back-gated graphene FET design without 

This work was financially supported by Department of Science and
Technology, Govt. of India, through the project grant number:
SB/S3/EECE/063/2014 

Fig. 1: (a) Sharp 2D peak and suppressed D peak in Raman spectra of post-transfer graphene indicates pristine nature of monolayer graphene. (b)-(d) 
Schematic of various graphene FETs (GFETs) architectures investigated. (b) back-gated FET (c) back-gated FET with dielectric capping and (d) top-gated 
FET with high-k metal gate stack (e) process flow. 
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dielectric capping, which is extended later to technologically 
relevant architectures. Figure. 2 shows typical TLP I-V 
characteristics of graphene FET at different gate bias, 
depicting abrupt failure when stressed under ESD conditions. 
Clearly matured graphene FET technology and high quality 
CVD graphene has resulted in record high failure current of 
1.75 mA/μm (Fig. 3). Figure. 4 reveals an early saturation in 
drain current with increasing channel length, which is 
attributed to shift from quasi-ballistic transport in short 
channel FETs to diffusive transport in long-channel devices. 
Compared to diffusive channel, carriers in quasi-ballistic 
channel encounter relatively less scattering centers, which 
leads to electron - phonon scattering only at the drain contact. 
Contrary to quasi-ballistic transport, in diffusive channel, 
carriers experience an increased scattering in the channel 
region than in the contacts, which in turn reduces the carrier 
mobility and results in early saturation in drain current. Fig. 4 
further depicts that early saturation in drain current lowers the 
failure current. Figure. 5 shows that devices with quasi-
ballistic channel fails due to thermal-assisted breakdown of 
contacts, while excessive heating of the channel results in 
failure of diffusive channel FETs. Consequently, failure 
current due to channel limited breakdown increases linearly 
with device width, while the same due to contact limited  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
breakdown saturates with increase in FETs electrical width. It 
is worth highlighting that here graphene is an atomically thin 
layer, whereas S/D metal pads are 100 nm thick. Figure. 5 
further reveals importance of S/D contact design for ESD 
robust graphene transistors. 
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Fig. 2: (a) TLP IV characteristics of back-gated GFET in ambient condition
at different gate voltages. Device was stressed till failure only for back-gate 
voltage (VBG) = 20 V. Inset shows the DC I-V characteristics of device under
stress. (b) DC spot current measured after each pulse. Abrupt collapse in
TLP current or DC spot current is the signature of failure. Note: In case of
abrupt failure, post failure data points are not shown in other figures for
clarity.   
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Fig. 4: TLP IV characteristics of back-gated GFET without dielectric capping
for different channel lengths. With increase in channel length nature of 
carrier transport shifts from quasi ballistic to diffusive, consequent of which
reduction and saturation in current is observed. (b) Spot measurements does
not show any change, corroborating the fact that length-dependent change in 
TLP I-V is indeed a transport behavior and not pre-failure degradation. 

Fig. 3:  Summary of failure current density, under ESD condition, reported
till date. Failure current (mA/ m) per monolayer is listed too next to the
respective symbols.  
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Figure. 6 depicts that when graphene devices were stressed 
using shorter TLP pulses the device survived till higher 
voltages, however higher, fields lead to carrier trapping in 
SiO2, which can be seen in form of current fluctuations and 
instabilities. It can also be noted that the trapped carriers shift 
the Dirac point, which in turn increases the drain current 
beyond the onset of current saturation. The shift in the Dirac 
point of the graphene channel is evident from the spot current 
data in Figure .6(b).  At higher stress levels, the DC spot 
current increases before it finally collapses due to the failure. 
This behavior is attributed to the carrier trapping in SiO2. 
Finally, it was found that unlike conventional silicon-based 
devices, which exhibit a power law like behavior, graphene 
device shows a very week power-to-failure dependence on 
stress time (Fig. 7).  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. HIGH-κ DIELECTRIC CAPPING AND ITS IMPLICATIONS 
ON ESD 

This section extends investigation to technologically relevant 
high-k dielectric-caped graphene FET device. 
Conventionally, under excessive heating, graphene channel 
fails due to oxidation of carbon atoms. However, Figure. 8 
reveals that despites the low oxygen content in passivated 
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compared to expected saturated It2 (blue curve). (b) False color SEM image
showing the S/D contact failure due to electro-migration.   
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Fig. 6: TLP characteristics of back-gated devices stressed using 25 ns TLP
pulse reveals role of gate dielectric traps in shifting the Dirac point and
delaying the onset of saturation. (b) Increase in spot current measured after
each pulse confirms shift in the Dirac point before device failure. 
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devices, the power-to-failure is lower compared to devices 
without passivation. It was found (Fig. 9) that unlike devices 
without passivation where quasi-ballistic transport is 
observed, the dielectric capping introduces boundary  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
scattering in the channel. This spreads heat across the whole 
channel and leads to diffusive transport (Fig. 9). Moreover, 
contrary to abrupt/hard failure of graphene FETs in ambient, 
a gradual failure is observed in case of dielectric-capped 
graphene FETs. This is attributed to reduced degree of 
freedom for the carbon to get oxidized, which makes the 
failure gradual (step-by-step), as depicted in Figure. 9 - 11. 
Figure. 12 pictorially summarizes ways in which different 
graphene devices fail under ESD condition. 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

V. HIGH-κ METAL GATE GRAPHENE FET 
Figure. 13 reveals that the top-gated graphene transistors fail 
at a higher current and power compared to their back-gated 
(w/ cap) counterparts. The improved ESD robustness can be 
attributed to efficient heat removal from the graphene channel 
through the metal gate. Presence of hot spot at the drain edge 
and heat removal by gate metal is confirmed by gate-to-S/D 
under-lap design, which depicts lower ESD robustness 
compared to over-lap design.  Consequently, position of top-
gate electrode plays a crucial role in removing heat energy 
from the channel. The top-gate not only affects the failure 
mechanism, but was also found to dynamically shift the Dirac 
point. This is attributed to trapping of charge carriers in gate 
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Fig. 8: (a) TLP IV characteristics of back-gated GFET, with and without
dielectric cap. Early current saturation and failure in capped devices is due to
higher self-heating. (b) Reduction in spot current with increasing ITLP is a
signature of gradual failure of capped graphene FET. 

Fig. 9: False color SEM Image of (a) GFET without dielectric cap. (b) with
dielectric cap.  Failure in capped devices is in patches contrary to a continuous
failure spot in w/o dielectric cap devices, confirming the gradual failure
mechanism with dielectric on top. 
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Fig. 11: TLP I-V characteristics of dielectric capped GFET for different
channel lengths. Increased onset of current saturation for shorter channel
length is evident. 

Fig. 12: Atomistic view of device failure: (a) Back-gated GFET w/o
dielectric cap with diffusive channel, (b) Back-gated GFET w/o dielectric
cap with ballistic transport. In these two cases, continuous failure spot is
depicted. (c) Back-gated GFET w/ dielectric cap showing failure patches
after first failure and (d) back-gated GFET w/ dielectric cap showing failure
patches after eventual failure. Cyan color depicts ALD Al2O3.  

Fig. 10: Transient analysis of back-gated GFET (a) & (b) without dielectric
cap, (c) & (d) with dielectric cap at the onset of failure. Direction of arrow
indicates (a/c) increase in pulse voltage amplitude and (b/d) subsequent
collapse in drain current with increasing ESD stress amplitude in steps.
Drain current collapses abruptly at the onset of failure in devices without
cap, whereas capped device shows gradual collapse in drain current. 
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dielectric, which is prominent on top-gates devices compared 
to back-gated devices. Finally, Figure. 14 depicts impact of 
vertical gate field on the failure threshold s. The difference in 
the ON resistance is attributed to the difference in the 
operating point w.r.t top-gate. Under floating gate condition, 
the gate to drain capacitance dynamically charges the top-
gate, which leads to early carrier velocity saturation and 
failure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION 
Saturation in drain current, just before failure, with increasing 
channel length was observed, which was found to be due to 
shift from quasi-ballistic transport in short channel FETs to 
diffusive transport in long channel devices. However, it was 
found that failure current is more or less insensitive to 
channel length. Furthermore, it was found that devices with 
quasi-ballistic channel fails due to thermal-assisted  
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Fig. 13: (a) TLP I-V characteristics of GFET compared for devices with
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Fig. 14: TLP I-V characteristics of top-gated GFET under different biasing
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and shift in Dirac point beyond the onset of current saturation, which is
attributed to generation of traps in top-gate dielectric. (b) Change in spot
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Fig.15. Comparison of (a) failure current, (b) maximum current density and (c) power-to-fail for various device architectures and biasing schemes investigated
in this work. Here BG w/ cap and BG w/o cap are back-gate GFET with and without dielectric cap respectively. GG is the grounded top-gate architecture,
under-lap is the gate under-lapped and grounded, FG is the GFET with floating top-gate and biased gate is the top-gate device biased at 200 mV. 
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breakdown of drain contact or graphene channel next to drain 
contact, while diffusive channel FETs experience excessive 
heating of the graphene channel and oxidation. It was 
observed that the devices stressed using shorter pulses (<25 
ns) survive higher voltages, however leads to device 
degradation due to carrier trapping in SiO2. Moreover, an 
absence of power law like behavior was discovered. In other 
words, failure current was found to be insensitive to stress 
time. This work reveals that devices without dielectric 
capping fail abruptly, whereas devices with dielectric capping 
or top-gate stack fails gradually. Interestingly, power to fail 
was found to be lower for devices with dielectric capping. 
Finally, top-gated devices were found to have better ESD 
robustness when compared to devices with dielectric capping, 
which is due to efficient heat removal from the graphene 
channel through the metal gate. The detailed physical insight 
and matured graphene FET technology has enabled record 
high failure current (Fig. 15). 
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