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Abstract— Physical Insights into the early formation of current 

filaments in High Voltage SCR is presented. Repeated current 

filamentation and subsequent filament spreading, which in turn 

results in filament motion, is detected using 3D TCAD. Impact 

of different load lines on ESD robustness and filament dynamics 

with ESD stress duration has been studied using experiments 

and 3D TCAD simulations. Finally, impact of silicide blocking in 

mitigating filament strength has been studied, which in turn 

improves the ESD robustness. 

Index Terms—Electrostatic Discharge, Laterally Double 

Diffused MOS (LDMOS), Silicon Controlled rectifier (SCR).  

I. INTRODUCTION 

ESD protection of high voltage (HV) functionalities, often a 

case in automotive or power-SoC applications, becomes 

challenging due to relatively higher power dissipation across 

protection elements and early space charge modulation [1]. 

Different HV ESD protection options are HV Diodes, 

LDMOS [2]-[3], LDMOS-SCR [4] and HV Silicon 

Controlled Rectifiers (SCR) [5]. HV SCRs are often 

favorable due it’s compact integration in a bidirectional 

configuration [5] and higher ESD robustness when compared 

to other HV snapback devices. Still, HV SCR’s ESD failure, 

unlike low voltage SCRs, don’t follow the much required 

power law behavior/Wunsh-Bell curve [6]. Engineering HV 

SCR to improve it’s ESD robustness under longer ESD stress 

or system level ESD conditions requires physical insights into 

the current filamentation and early failure of these devices 

under longer ESD stress conditions. Different groups in the 

past have made efforts to understand the current filament 

formation and its motion, as a function of stress time and 

stress amplitude in various different ESD protection devices 

[7-11]. However, such detailed study on High Voltage 

Bidirectional SCR devices using measured data and 3D 

TCAD simulations is still missing in the literature. Keeping 

the above in mind, this work presents insights into the 

filament dynamics in HV SCRs and it’s implications on ESD 

power scalability.  

 
II. High Voltage (Bidirectional) SCR Under Stress 

HV SCR integrated in a bidirectional configuration as 

depicted in figure.1 is studied in this work. Here two P-Wells 

(can be symmetrical or asymmetrical) are implanted inside a 

HV N-Well, where the N-Well is left floating / without any  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N-type tap to take both positive and negative ESD strikes. 

The high side P+/P-well region inside N-Well acts as the  
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Fig. 1: 2D Cross-sectional view of HVSCR. The N-well is left floating. 

The P+ /P-well acts as anode terminal. The highly doped buried region 

(NBL) is underneath N-well for isolation. Here, LSB is the silicide blocked 

length. When LSB=0 it is Fully Silicided. The gate is grounded in all the 

measurements.  
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Fig. 2: Experimentally measured TLP I-V characteristics of fully silicided 

HV SCR under different pulse durations. 250 Ω load line is used in these 

measurements. (b) Failure current measured at different Pulse widths and 

load lines. A collapse in It2 for 50Ω load line beyond 100ns pulse is 

observed. 
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anode contact, whereas the other P+ in P-Well acts as SCR’s 

P-tap. The N+ in P-Well acts as emitter terminal of parasitic 

NPN, which can also have silicide blocking. The gate can be 

used to externally trigger the SCR. This work however 

studies the worst-case scenario, which is the grounded gate 

configuration. The device is in bidirectional configuration, 

which results in S-shaped I-V characteristic. Given the 

identical behaviour under positive and negative stress 

conditions, this work will present results and physics under 

positive stress condition. 

III. UNIQUE EXPERIMENTAL AND 3D TCAD OBSERVATIONS 

Measured TLP I-V characteristic (Fig. 2) of fully silicided 

HV SCR show the following trends: (i) very high failure 

current under 100ns TLP, which is independent of load line 

resistance; (ii) failure current drops dramatically at longer 

stress times (>200ns), depicting a clear dependence on load 

line resistance; (iii) high load line resistance (250Ω) allows 

the device to survive snapback state, however device fails a 

little above holding current, which attributes to ESD failure 

current independent of stress time for longer stress pulses; 

and (iv) lower load line resistance (50Ω) leads to high current 

injection immediately after snapback, leading to catastrophic 

failure resulting in practically zero ESD robustness of HV 

SCRs at longer stress pulses. 3D TCAD characteristics (Fig. 

3) depict a deeper voltage snapback and sharp increase in 

lattice temperature post snapback when compared to 2D 

counterpart. It should be noted that 2D simulations in 

principle will not capture the 3D phenomena. The observed  

 

 
 

 

 

 

 

 

 

 

departure of high current 3D TCAD characteristics from 2D 

behaviour is unique to HV SCR (often not seen in LV SCRs), 

which depicts presence of non-uniformities, possibility in 

form of current filament, along the width (3D) plane.   

IV. PHYSICAL INSIGHTS INTO FILAMENT FORMATION 

At current before snapback, well junction breakdown 

dominates the current conduction (Fig. 4a). Impact ionization  

 (II) generated excess holes consequently trigger the parasitic 

NPN (Fig 4b), which floods the N-Well with injected 

electrons resulting in electron concentration higher than N-

Well doping (Fig 4c). This subsequently results in space 

charge modulation (SCM) (Fig 4d-f), which shifts and 

localizes the peak electric field away from well junction (Fig 

4f) and SCR turn-on. At the onset of junction breakdown, the 

current flows uniformly across the device width (Fig. 5a) and 

peak field was found to be around well junction (Fig. 5d). 

However, non-uniform II results in a non-uniform SCR turn-  
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Fig. 6: Conduction current density at injected current of 1.5mA/μm extracted from 

2D iso-thermal simulation. The formation of current filament implies that the 

filaments in HV SCR is electrical in nature.  
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Fig. 3: Simulated TLP I-V characteristics of 2D and 3D devices. 3D device 

shows deeper snapback and increase in lattice temperature, which is 

attributed to presence of filament in 3D device. 
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Fig. 5: (a-c) Conduction current density and (d-f) Electric field with increasing 

stress time extracted at an injected current of 1.5mA/μm by using Electrothermal 

3D simulations.  
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Fig. 4: (a-c) Conduction current density and (d-f) Electric field at different injection currents.  Electrothermal simulations are employed. 
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on (Fig. 5b), which in turn leads to localized SCM at one of 

the corners (Fig. 5e). Localized space charge modulation 

causes localized e-field along the device width which further 

strengthens non-uniform II and localized SCM (Fig. 5c,f). 

This positive feedback action results in electrical instability 

and early filament formation, which consequently increases 

the lattice temperature inside the filament. Similar, 

mechanism is also discussed in [12]. Presence of filament in 

Iso-thermal 3D TCAD simulation (Fig. 6) validates that the 

filament is due to electrical instability as explained above and 

not because of thermal run-away.   

V. FILAMENT DYNAMICS: REPEATED FILAMENTATION AND 

SPREADING  

Probing device behavior beyond filament formation revealed 

unique filament dynamics in HV SCR (Fig. 7 & 8).  

Formation of filament results in increased lattice temperature, 

which lowers the II rate inside the filament. Consequently, 

attributed to higher II rate outside filament, SCR turn-on 

efficiency improves outside the filament, which forces the 

filament to spread along the width plane (Fig. 9). This results 

in uniform current conduction and reduction in maximum 

lattice temperature. It should be noted that the II rate should 

be highest at the other corner, which is furthest from the hot  

 

 

 

 

 

 

 

 

 

 

 

 

 

spot / filament location. This parallelly triggers the same non- 

uniform turn-on action, however at the other corner. This way 

the filament shifts to the other corner post filament spreading 

(Fig. 7). The process continues and is seen as filament 

motions. This results in ringing in lattice temperature, which 

hinders the device to see a catastrophic failure immediately 

after formation of current filament (Fig. 10). This was 

validated through experiments, where transient behavior 

 

 
Fig. 9: (a) Electric field (EF) and (b) Impact ionization (II) in the device, with 

increasing stress time for the injected current of 2mA/μm. The shift in II and 

Electric field across the device width can be seen with increase in stress time. 

Filament formation causes lattice temperature to increase inside the filament 

region, which lower impact ionization rate. This allows the adjacent SCRs in 

the width plane to trigger faster, which forces filament to spread along the 

device width. Once it reaches the other edge, it becomes stronger again and 

starts spreading in the reverse direction.  
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Fig. 8: Measured transient (a) voltage and (c) current, depicting the pulse to 

pulse instability. At low source voltage abrupt collapse in DUT voltage and 

increase in current is observed indicating presence of filament. At higher 

voltage the same behavior is missing because of current spreading. 
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Fig. 7: (a-d) Conduction current density and (e-h) lattice temperature at different stress times at an injected current of 2mA/μm. The filament is observed 

to form at one of the edges (a), which results in a localized hotspot (e). With time, filament spread along the device width (b), which relaxes the lattice 

temperature (f). When it reaches the other corner, filament gets stronger at the other edge (c), which again creates a hotspot at the other corner (g). Same 

is found to repeat over the stress time (d & h). 
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depicts pulse-to-pulse instability (Fig. 8), which is due to 

presence of filament and it’s spreading. It is worth 

highlighting that such filament motion/spreading was found 

to be possible due to the floating nature of N-well region, 

which allows faster turn-on of SCR and subsequent filament 

 

 

 

spreading before lattice temperature inside filament exceeds 

critical temperature for Si failure. The series of physical 

events responsible for the filament motion are summarized in 

Fig. 11. spreading before lattice temperature inside filament 

exceeds critical temperature for Si failure. The series of 

physical events responsible for the filament motion are 

summarized in Fig. 11. 

VI. IMPACT OF SILICIDE BLOCKING 

Figure 12 shows silicide blocking to improve ESD 

robustness and power scalability by suppressing strength of 

filament (Fig. 13). Though peak temperature inside filament 

was mitigated, presence of filament, filament motion and the 

root cause remain unchanged.   
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Fig. 13: (a-b) Conduction current density and (c-d) lattice temperature for silicide blocked (a & c) and fully silicided (b & d) device at injected current of 

2mA/µm. Silicide blocking increases filament width, which lowers the peak temperature inside filament. 

 

-15 0 15 30 45 60
0.0

0.4

0.8

1.2

1.6

2.0 PW (ns)

 100 

 250

 500 

 

T
L

P
 C

u
rr

e
n

t(
A

)

TLP Voltage (V)(a)

1E-8 1E-6 1E-4 0.01
Leakage Current (A)

 

0 500 1000 1500
0.0

0.4

0.8

1.2

1.6

2.0

 

 

F
a

ilu
re

 C
u

rr
e

n
t 

(A
)

Time (ns)

Loadline used

 250 

 50  

(b)

Solid-Fully Silicided 

Dash- Silicde blocked

 
Fig. 12: Experimental TLP I-V characteristics of source side silicide blocked 

HV SCR. The experiments are carried out with 250Ω load line. (b) Failure 

current comparison for different load lines at various pulse widths. With 

250Ω load line device survives longer pulses, whereas 50Ω load line results a 

collapse in failure current. Silicide blocked device was found to offer 

improved power law behavior however the same trend persisted at longer 

pulse widths. 
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Fig. 11: Flow chart summarizing the series physical events discussed.   
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Fig. 10: Maximum lattice temperature as a function of stress time at different 

injected current extracted from both 2D and 3D simulations. Oscillation in 

temperature across 3D device is attributed to the filament formation and 

spreading, which however is missing in 2D simulations. 
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VI. CONCLUSION     

HV BDSCR devices were found to form electrical current 

filaments. The filament formation in these devices is 

attributed to an electrical instability resulting from non-

uniform NPN turn-on, SCM and e-field localization. 

However, due to high resistance floating N-well, the filament 

was found to spread and subsequently move along the device 

width, which allowed device to survive snapback. While 

filament formation is electrical in nature, filament spreading 

is found to be electro-thermal phenomenon. Impact of load 

line in conjunction with early filament formation is discussed. 

Silicide blocking of NPN’s emitter terminal mitigates the 

filament strength, which in-turn improves the Failure power 

even at longer pulse duration. Device behavior and presence 

of filament motion was however unchanged.           
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Fig. 14: (3D Sim.) Maximum temperature as a function of time across fully 

silicided and silicide blocked device at an injected current of 2mA/μm. 

Though both devices show filament formation, SB has lower average 

temperature.   
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