
Mid-term exam solution key

Prayag
Neural networks and learning systems-I

May 21, 2019

Problem 1.

Solution. 1. Consider the update equation

W (n+ 1) = W (n)− η∆W (1)

where W (n) is the weight vector at time n, η is the learning rate, and ∆W is the
gradient of the cost function with respect to the weight vector W (n).

(a) The learning rate must be increased when the derivative of the cost function with
respect to a weight vector has the same algebraic sign to accelerate the convergence
of the algorithm.

(b) The learning rate must be decreased when the algebraic sign of the derivative of
cost function alternates with consecutive iterations. This reduces the oscillations
during the convergence fo the algorithm.

2. This follows from the composition of linear maps. Consider a affine linear map g(x) =
ax + b where a and b are non-zero constants. Similarly f(x) = a′x + b′ with a′ and b′

being non-zero constants. Consider the composition f(g(x)) = cx + d where c = aa′

and d = a′b+ d which is again a affine linear map.

3. Linear regression: Y = σ0 + σ1X + ε, Quartic regression: Y = σ0 + σ1X + σ2X
2 +

σ3X
3 +σ4X

4ε, LRSS: training residual sum of squares for linear regression, and QRSS:
training residual sum of squares for quartic regression.
Case 1: Let ε 6= 0 and E = 0. In the case of linear regression, Y = f(x) + ε we have

E
(
(y − ŷ)2

)
=E

(
f(x) + ε− f̂(x)

)2
=E

(
f(x)− f̂(x)

)2
+ E(ε2) + 2E(ε)E

(
f(x)− f̂(x)

)
=E

(
f(x)− f̂(x)

)2
︸ ︷︷ ︸

can be minimized

+ Var(x)︸ ︷︷ ︸
cannot be minimized

(2)

Since Var(x) cannot be minimized using linear regression and on the other hand the
quartic regression is more flexible and can even fit the points with noise, therefore

1



x1 x2 x3

x4 x5 x6

x7 x8 x9

Figure 1: A 3× 3 image.

QRSS ≤ LRSS.
Case 2: With ε = 0, the relationship is truly linear i.e., Y = σ0 + σ1X. In such cases,
LRSS and QRSS will be equal since both of the models can fit the data exactly.

4. Consider a 3× 3 image as shown in Figure 1 and a 2× 2 kernel as shown in Figure 2.
Moving the kernel over the 3× 3 image we get 4 outputs which is given by

k1 k2

k3 k4

Figure 2: A 2× 2 kernel.

a1 =x1k1 + x2k2 + x4k3 + x5k4

a2 =x2k1 + x3k2 + x5k3 + x6k4

a3 =x4k1 + x5k2 + x7k3 + x8k4

a4 =x5k1 + x6k2 + x8k3 + x9k4.

Graphical illustration of all the connections is shown in Figure 3

2



x1

x2

x3

x4

x5

x6

x7

x8

x9

a1

a2

a3

a4

max

max

(a1; a2)

(a3; a4)

k1

k2

k1 k3

k2

k4

k3

k4k1

k2

k3

k4

k1

k2

k3

k4

Figure 3

�

Problem 2.

Solution. The intermediate variables in the network shown in Figure 4 is given by

v1 =x1 + x2 + x3 − 0.5

v2 =x1 + x2 + x3 − 1.5

v3 =x1 + x2 + x3 − 2.5

y1 =φ(v1)

y2 =φ(v2)

y3 =φ(v3) (3)

where {
1 x ≥ 0

0 Otherwise
(4)

�

3



v1

v2

v3

y1

y2

y3

z φ(z)

−0:5

−1:5

−2:5

−0:5
1

−1

1

1

1

1
1

1 1

1

1

1

x1

x2

x3

Figure 4: 3-bit XOR network.

x0

x2

xn−1

φ(z)
z

−0:5

−1:5

−n+ 1:5

(−1)n−1

1

x0

xn−1

y0

yn−1

Figure 5: n-bit XOR network.

4



Table 1: Intermediate variables in the network

x1 x2 x3 v1 v2 v3 y1 y2 y3 z φ(z)

0 0 0 -0.5 -1.5 -2.5 0 0 0 -0.5 0

0 0 1 0.5 -0.5 -1.5 1 0 0 0.5 1

0 1 0 0.5 -0.5 -1.5 1 0 0 0.5 1

0 1 1 1.5 0.5 -0.5 1 1 0 -0.5 0

1 0 0 0.5 -1.5 -1.5 1 0 0 0.5 1

1 0 1 1.5 0.5 -0.5 1 1 0 -0.5 0

1 1 0 1.5 0.5 -0.5 1 1 0 -0.5 0

1 1 1 2.5 1.5 0.5 1 1 1 0.5 1

Problem 3.

Solution. The cost function is given by

J(W ) =
∑
x∈H

(
−WT

x
)

(5)

where H is the of misclassified inputs. Differentiating J(W ) with respect to W (n) we get

∇WJ(W ) =
∑
x∈H

−x (6)

The weight vector is updated as follows:

W (n+ 1) =W (n)− η(n)∇WJ(W )

=W (n) + η
∑
x∈H

x (7)

where η is assumed to remain same for all n, say η = 1. Let the initial weight vector be

W (0) = 0. Consider W
T
x ≤ 0 and x(n) ∈ H is the set of misclassified samples. We know

that

W (n+ 1) =W (n) +
∑
x∈H

x

=
∑
x∈H0

x+ · · ·+
∑
x∈Hn

x (8)

let us consider a W 0 such that W
T

0 x > 0 for all x(n) belongs to class 1. Pre-multiplying the

above equation by W
T

0 we get

W
T

0W (n+ 1) =
∑
x∈H0

W
T

0 x+ · · ·+
∑
x∈Hn

W
T

0 x. (9)

5



Let α = mini

∑
x∈Hi

W
T

0 x. Using Cauchy-Schwartz inequality we get

‖W 0‖2‖W n+1‖2 ≥ (n+ 1)2 α2

‖W n+1‖2 ≥
(n+ 1)2 α2

‖W 0‖2
(10)

We know that,

W (n+ 1) =W (n) +
∑
x∈Hn

x

‖W (n+ 1)‖2 =‖W (n)‖2 + ‖
∑
x∈Hn

x‖2 + 2W
T

(n)
∑
x∈Hn

x︸ ︷︷ ︸
W

T
(n)x≤0

‖W (n+ 1)‖2 ≤‖W (n)‖2 + ‖
∑
x∈Hn

x‖2

≤
n∑
1

‖
∑
x∈Hn

x‖2

≤(n+ 1)β (11)

where β = maxi ‖
∑

x∈Hi

x‖2. Using equations (10) and (11) we get

nmax =

(
β

α2
‖W 0‖2

)
− 1. (12)

Therefore the batch perceptron algorithm converges after nmax epochs. �

Problem 4.

Solution. Consider through the Taylor series expansion

Eavg

(
W (n) + ∆W (n)

)
= Eavg

(
W (n)

)
+gT(n)∆W (n)+

1

2
∆W (n)TH(n)∆W (n)+h.o.t (13)

and neglecting the h.o.t we get

Eavg

(
W (n) + ∆W (n)

)
= Eavg

(
W (n)

)
+ gT(n)∆W (n) +

1

2
∆W (n)TH(n)∆W (n). (14)

Differentiating the above equation with respect to ∆W (n)T we get

∂Eavg

(
W (n) + ∆W (n)

)
∂∆W (n)T

=0

H(n)∆W (n) =− g(n)

∆W (n)T = −H−1(n)g(n) (15)

provided H−1(n) exists. One can also get a pseudo-inverse of H in case of singularity. The
advantages of Hessian are as follows:

6



1. Accelerated convergence.

2. Possibly low rank approximations over H to obtain low complexity algorithms (i.e.,
there is control on complexity).

�

7


