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Problem 6.1.

Solution. The given data x is linearly separable and the separating hyperplane is given by
wTx + b = 0 where w denotes the weight vector and b denotes the bias. The hyperplane is
said to correspond to a canonical pair (w, b) if for the set of input patters {xi}Ni=1 satisfies

min
i=1,2,...,N

|wTxi + b| = 1. (1)

Let wTxi + b = g(xi) where yi gives the distance of the input data xi from the separating
hyperplane. We know that any point xi can be decomposed into two components as given
below:

xi = xp + r
w

‖w‖
where xp is the normal projection of the point x on to the hyperplane and r is the distance
of the data point from the hyperplane.

g(xi) = wT

(
xp + r

w

‖w‖

)
+ b

= wTxp + r
wTw

‖w‖
+ b

= wTxp + b+ r‖w‖
= g(xp) + r‖w‖
= r‖w‖ Since g(xp) = 0.

=⇒ r =
g(xi)

‖w‖

From (1), we know that there exists at least one xi such that wTxi+b = 1 or wTxi+b = −1.
Therefore g(xi) = ±1. Therefore

r =

{
1
‖w‖ if Class 1

− 1
‖w‖ if Class -1

The optimal separation between the two classes is given by 2r = 2
‖w‖ . �
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Problem 6.3.

Solution. Given problem:

min
1

2
wTw + C

N∑
i=1

ζi

subject to ζi ≥ 0 ∀i = 1, 2, . . . , N

di(w
Txi + b) ≥ 1− ζi ∀i = 1, 2, . . . , N

Writing this in the standard form to write the Lagrange, we get

min
1

2
wTw + C

N∑
i=1

ζi

subject to ζi ≥ 0 ∀i = 1, 2, . . . , N

di(w
Txi + b)− 1 + ζi ≥ 0 ∀i = 1, 2, . . . , N

The Lagrange can now be written as follows using the Lagrange multipliers λi and αi as

L =
1

2
wTw + C

N∑
i=1

ζi −
N∑
i=1

λiζi −
N∑
i=1

αi
(
di(w

Txi + b)− 1 + ζi
)

L =
1

2
wTw + C

N∑
i=1

ζi −
N∑
i=1

λiζi −
N∑
i=1

αidiw
Txi −

N∑
i=1

αidib+
N∑
i=1

αi −
N∑
i=1

αiζi

Differentiating the Lagrange and equating to zero, we get

∂L

∂w
= 0 =⇒ w−

N∑
i=1

αidixi = 0 =⇒ w =
N∑
i=1

αidixi

∂L

∂b
= 0 =⇒

N∑
i=1

αidi = 0

∂L

∂ζi
= 0 =⇒ C − λi − αi = 0 =⇒ C = λi + αi

Substituting the above in the Lagrange, we get

L =
1

2

N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj +

N∑
i=1

(λi + αi)ζi −
N∑
i=1

λiζi −
N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj −

N∑
i=1

αidib+
N∑
i=1

αi

−
N∑
i=1

αiζi

=

(
1

2
− 1

) N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj +

��
���

���
���

��
���

��:0[
N∑
i=1

(λi + αi)−
N∑
i=1

λi −
N∑
i=1

αi

]
ζi − b

�
�
�
���

0
N∑
i=1

αidi +
N∑
i=1

αi

= − 1

2

N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj +

N∑
i=1

αi
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From this, the dual can be written as follows

max
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj

subject to

N∑
i=1

αidi = 0

C − λi − αi = 0

αi ≥ 0

λi ≥ 0


∀i = 1, 2, . . . , N

We observe that the Lagrange multiplier λi appears only in the constraint C − λi − αi =⇒
λi = C − αi. For λi ≥ 0 to be true, C − αi ≥ 0 =⇒ C ≥ αi. Combining this with αi ≥ 0
constraint, we get 0 ≤ αi ≤ C. The dual problem can now be written as

max
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj

subject to

N∑
i=1

αidi = 0

0 ≤ αi ≤ C

 ∀i = 1, 2, . . . , N

�

Problem 6.11.

Solution. It is given that a joint probability density function pX1,X2(x1, x2) over an H-by-
H product space is said to be a P-matrix provided it satisfies finitely positive semidefinite
property. The matrix P will be positive semidefinite if for every non-zero column vector z,
the value obtained from zTPz is positive or zero.
Let us consider the simple case of two-element set X = [X1, X2] of random variables.
Case 1: Are all P -kernels joint distributions?
From a given P−kernel P (x, y), we can generate an identical kernel the P̂ -kernel if it satisfies∑
x∈X

∑
y∈X

P (x, y) = C, where C is some constant such that C < ∞. We can define the P̂ -

kernels as P̂ (x, y) = 1
C
P (x, y). This definition satisfies the properties of a P-matrix since we

have only scaled the elements. Since P̂ (x, y) is also a joint distribution, we can say that all
P -kernels are joint distributions.
Case 2: Are all joint distributions P -kernels?
Considering the two element case, let us create a joint distribution and verify if it satisfies
the properties of a P -kernel. The joint probability matrix for a two element case would be
given by

PX,Y =

[
p(x1, x1) p(x1, x2)
p(x2, x1) p(x2, x2)

]

3



Considering a particular case where p(x1, x1) = 0, p(x1, x2) = 0.5, p(x2, x1) = 0.5, p(x2, x2) =
0, we get the

PX,Y =

[
0 0.5

0.5 0

]
Solving for the eigenvalues, we get λ = ±0.5. From the given definition, the P-matrix must
be positive semidefinite, but an eigenvalue in the above case is negative. Therefore not all
joint distributions are P -kernels.

�

Problem 6.21.

Solution. Given k(xi, .) and k(xj, .) denote a pain of kernels, where i, j = 1, 2, . . . , N and
the vectors have the same dimensionality. We need to show that

〈k(xi, .), k(xj, .)〉 = k(xi,xj). (2)

Let f(.) and g(.) be two functions defined over a vector space F such that

f(.) =
N∑
i=1

aik(xi, .), (3)

g(.) =
N∑
j=1

bjk(xj, .) (4)

where k(x, .) is a mercer kernel. We can write

f(xj) =
N∑
i=1

aik(xi,xj), (5)

g(xi) =
N∑
j=1

bjk(xj,xi). (6)

We know that
k(xi,xj) = φT(xi)φ(xj) (7)

Using (7) in (5) and (6), we get

f(xj) =
N∑
i=1

aiφ
T(xi)φ(xj), (8)

g(xi) =
N∑
j=1

bjφ
T(xi)φ(xj). (9)

From the above, we obtain the functions below

f(.) =
N∑
i=1

aiφ(xi), (10)

g(.) =
N∑
j=1

bjφ(xj) (11)
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Taking the inner product using (10) and (11), we get

〈f, g〉 =

(
N∑
i=1

aiφ(xi)

)T( N∑
j=1

bjφ(xj)

)

〈f, g〉 =
N∑
i=1

N∑
j=1

aibjφ
T(xi)φ(xj)

〈f, g〉 =
N∑
i=1

N∑
j=1

aibjk(xi,xj) (12)

Taking the inner product using (3) and (4), we get

〈f, g〉 =〈
N∑
i=1

aik(xi, .),
N∑
j=1

bjk(xj, .)〉

〈f, g〉 =
N∑
i=1

N∑
j=1

aibj〈k(xi, .)k(xj, .)〉 (13)

Comparing (12) and (13), we get 〈k(xi, .), k(xj, .)〉 = k(xi,xj). �

Problem 6.25.

Solution. (a) Generation of data set of three concentric circles with the radii as mentioned
in the question. The data generated is as below.

(b) The support machine was trained with C = 500 and the decision boundary obtained
is as given below.

(c) The network was tested and an accuracy of 68% was obtained. We could argue that
the value of C might play a role in the accuracy of the SVM.
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(d) The network was trained with C = 100 and C = 2500. The decision boundaries
obtained are as given below.

It is observed that for the case of C = 100, the network accuracy was 62% and for
C = 2500, the network accuracy was 64%.

�

Problem 2.

Solution. Given the kernel K(x, .) = tanh(β0x
Tx + β1) for x ∈ Rd. Mercer’s theorem is

satisfied only for some choices of β0 and β1.
Let us first eliminate the conditions where it fails to be a Mercer kernel.

• Consider β0 < 0 and β1 < 0.
Since xTx is an inner product, it is always positive. Therefore, for the above case,
β0x

Tx + β1 < 0
K(x, .) = tanh(β0x

Tx + β1) < 0.

But we know that K(x, .) cannot take negative values. Therefore for the condition
β0 < 0 and β1 < 0, the kernel is not valid.

• Consider β0 < 0 and β1 > 0.
For the kernel to be valid, β0x

Tx + β1 > 0. It is given that β0 < 0 =⇒ β0x
Tx < 0.
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Therefore, for the kernel to be valid, the condition to be satisfied is β1 > −β0xTx.
However, we cannot comment on whether it satisfies Mercer’s theorem or not.

We know that Mercer’s theorem for polynomial type (xTx + 1)p always satisfy Mercer’s
theorem. Let us consider the Maclaurin series for tanh function.

tanh(x) = x− x3

3
+

2x5

15
− 17x7

315
+ · · ·

Using the above, we get

tanh(β0x
Tx + β1) = (β0x

Tx + β1)−
(β0x

Tx + β1)
3

3
+

2(β0x
Tx + β1)

5

15
− · · ·

Assuming β0x
Tx + β1 is a small value, we take the 1st order approximation of the function

to get
tanh(β0x

Tx + β1) ≈ (β0x
Tx + β1)

Comparing this with the polynomial kernel, we see that for values β0 = 1, β1 = 1 and p = 1,
the kernel satisfies the Mercer’s theorem.

tanh(xTx + 1) ≈ (xTx + 1)

Using the above idea, for positive values of β0, we can define a new variable such that
x̃ =
√
β0x. Taking the inner product, we see that

x̃Tx̃ = (
√
β0x)T(

√
β0x) =

√
β0
√
β0x

Tx = β0x
Tx

Therefore, we can approximate any positive β0 using the above method. To see how this
works, let us consider an example of x to be a two element vector.

β0x
Tx = β0[x1 x2]

[
x1
x2

]
= β0(x

2
1 + x22)

x̃Tx̃ =
[√

β0x1
√
β0x2

] [√β0x1√
β0x2

]
= β0x

2
1 + β0x

2
2 = β0(x

2
1 + x22)

Therefore, for any β0 > 0 and β1 = 1, we can approximate

tanh(β0x
Tx + 1) ≈ (x̃Tx̃ + 1)

The above solution relies on the assumption that β0x
Tx+ β1 is small. Therefore, for β0 > 0

and β1 < 0, it would be a better approximation of the kernel as compared to the case of
β0 > 0 and β1 > 0. The observations have been summarized in the table below.

These observations are in line with the theoretic proofs obtained in the paper “A study
on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods.”
by Lin, H.T. and Lin, C.J. Their results are as given below.

Therefore, we see that the tanh(.) kernel satisfies the Mercer’s theorem better when
β0 > 0 and β1 < 0. �
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β0 β1 Observations
+ - A good approximation of the Mercer kernel as β0x

Tx + β1 is small
+ + Not as good approximation as β0x

Tx + β1 is larger than above
- + Valid kernel only when β1 > −β0xTx, otherwise invalid
- - Not a valid kernel

β0 β1 Results
+ - Kernel is conditionally positive semidefinite for small β1, and is similar to RBF for small β0
+ + In general not as good as the (+,−) case
- + Objective value of a function becomes −∞ after β1 is large
- - Easily the objective value of the function becomes −∞

Problem 3.

Solution. Given problem:

Lε(d, y) =

{
|d− y| − ε, |d− y| ≥ ε

0, else

min
1

N

N−1∑
i=0

Lε(di, yi)

subject to

‖w‖2 ≤ c0

di −wTφ(xi) ≤ ε+ ζi

wTφ(xi)− di ≤ ε+ ζ
′
i

ζi ≥ 0

ζ
′
i ≥ 0


∀i = 0, 1, 2, . . . , N − 1.

Substituting yi = wTφ(xi) and writing the above in the standard form to write the Lagrange,
we get

min
1

N

N−1∑
i=0

Lε(di, yi)

subject to

c0 − ‖w‖2 ≥ 0

ε+ ζi − di + wTφ(xi) ≥ 0

ε+ ζ
′
i −wTφ(xi) + di ≥ 0

ζi ≥ 0

ζ
′
i ≥ 0


∀i = 0, 1, 2, . . . , N − 1.
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The primal can be set up using the Lagrange as

L =
1

N

N−1∑
i=0

(
ζi + ζ

′

i

)
− α

(
c0 − ‖w‖2

)
−

N−1∑
i=0

βi
(
ε+ ζi − di + wTφ(xi)

)
−

N−1∑
i=0

β
′

i

(
ε+ ζ

′

i −wTφ(xi) + di

)
−

N−1∑
i=0

γiζi −
N−1∑
i=0

γ
′

iζ
′

i (14)

where α, βi, β
′
i, γi, and γ

′
i are the Lagrangian multipliers. Differentiating the Lagrange and

equating to zero, we get

∂L

∂w
= 0 =⇒ 2αw−

N−1∑
i=0

βiφ(xi) +
N−1∑
i=0

β
′

iφ(xi) = 0 =⇒ w =
1

2α

N−1∑
i=0

(
βi − β

′

i

)
φ(xi)

∂L

∂ζi
= 0 =⇒ 1

N
− βi − γi = 0 =⇒ βi + γi =

1

N

∂L

∂ζi

′

= 0 =⇒ 1

N
− β ′

i − γ
′

i = 0 =⇒ β
′

i + γ
′

i =
1

N

Grouping similar terms in (14), we get

L =
N−1∑
i=0

(
1

N
− βi − γi

)
ζi +

N−1∑
i=0

(
1

N
− β ′

i − γ
′

i

)
ζ

′

i − αc0 + α‖w‖2 −
N−1∑
i=0

(
βi − β

′

i

)
wTφ(xi)

−
N−1∑
i=0

(βi + β
′

i)ε+
N−1∑
i=0

(βi + β
′

i)di (15)
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Substituting the above values, we get

L =
N−1∑
i=0

(βi + γi − βi − γi) ζi +
N−1∑
i=0

(
β

′

i + γ
′

i − β
′

i − γ
′

i

)
ζ

′

i − αc0

+
α

4α2

N−1∑
i=0

N−1∑
j=0

(
βi − β

′

i

)(
βj − β

′

j

)
φ(xi)

Tφ(xj)

− 1

2α

N−1∑
i=0

N−1∑
j=0

(
βi − β

′

i

)(
βj − β

′

j

)
φ(xi)

Tφ(xj)

−
N−1∑
i=0

(βi + β
′

i)ε+
N−1∑
i=0

(βi + β
′

i)di

=
N−1∑
i=0

(
��

���
���

�:0
βi + γi − βi − γi

)
ζi +

N−1∑
i=0

(
���

���
���

�:0
β

′

i + γ
′

i − β
′

i − γ
′

i

)
ζ

′

i − αc0

+

(
1

4α
− 1

2α

)N−1∑
i=0

N−1∑
j=0

(
βi − β

′

i

)(
βj − β

′

j

)
φ(xi)

Tφ(xj)

−
N−1∑
i=0

(βi + β
′

i)ε+
N−1∑
i=0

(βi + β
′

i)di

= − αc0 −
1

4α

N−1∑
i=0

N−1∑
j=0

(
βi − β

′

i

)(
βj − β

′

j

)
φ(xi)

Tφ(xj)

−
N−1∑
i=0

(βi + β
′

i)ε+
N−1∑
i=0

(βi + β
′

i)di

From the above, the dual can be written as

max − αc0 −
1

4α

N−1∑
i=0

N−1∑
j=0

(
βi − β

′

i

)(
βj − β

′

j

)
φ(xi)

Tφ(xj)

−
N−1∑
i=0

(βi + β
′

i)ε+
N−1∑
i=0

(βi + β
′

i)di

subject to

βi + γi = 1
N

β
′
i + γ

′
i = 1

N

α ≥ 0

βi ≥ 0

β
′
i ≥ 0

γi ≥ 0

γ
′
i ≥ 0


∀i = 0, 1, 2, . . . , N − 1
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We observe that the Lagrange multiplier γi and γ
′
i appear only in the constraint βi + γi = 1

N

and β
′
i + γ

′
i = 1

N
respectively. For γi ≥ 0 to be true, 1

N
− βi ≥ 0 =⇒ 1

N
≥ βi and for γ

′
i ≥ 0

to be true 1
N
− β ′

i ≥ 0 =⇒ 1
N
≥ β

′
i. Combining this with βi ≥ 0 and β

′
i ≥ 0 constraint, we

get 0 ≤ βi ≤ 1
N

and 0 ≤ β
′
i ≤ 1

N
respectively. The dual problem can now be written as

max − αc0 −
1

4α

N−1∑
i=0

N−1∑
j=0

(
βi − β

′

i

)(
βj − β

′

j

)
φ(xi)

Tφ(xj)

−
N−1∑
i=0

(βi + β
′

i)ε+
N−1∑
i=0

(βi + β
′

i)di

subject to

α ≥ 0

0 ≤ βi ≤ 1
N

0 ≤ β
′
i ≤ 1

N

 ∀i = 0, 1, 2, . . . , N − 1.

�
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