Homework #1 solution key

Prayag Neural networks and learning systems-I

February 25, 2019

Problem 1.

Solution. The output y is given by

$$y(n) = \phi \left(w_{O1} y_1(n) + w_{O2} y_2(n) \right) \tag{1}$$

where

$$y_1(n) = \phi \left(x_1 w_{11} + x_2 w_{12} + y_1 (n-1) w_{11}^{''} + y_2(n) w_{12}^{'} \right)$$
(2)

$$y_2(n) = \phi \left(x_1 w_{21} + x_2 w_{22} + y_2(n-1) w_{22}^{''} + y_1(n) w_{21}^{'} \right)$$
(3)

Problem 2.

Figure 1: (a) overlapping of convex hulls A and B. (b) linearly separable convex hulls

Solution. (a) From Figure 1(a) we see that the two convex hulls are intersecting. Assume that there exist vectors \overline{w} and \overline{b} such that $\overline{w}^T \overline{x}_n + \overline{b} > 0$ for all $\overline{x}_n \in A$ and $\overline{w}^T \overline{z}_n + \overline{b} < 0$ for all $\overline{z}_n \in B$. We know that $A \cap B \neq \phi$ implies there exist at least one element $\overline{y} \in A \cap B$. We can write $\overline{y} = \sum_{n=1}^{N_x} \alpha_n \overline{x}_n$ and $\overline{y} = \sum_{m=1}^{N_z} \beta_m \overline{z}_m$ for some α and β satisfying the conditions as mentioned in the question. We look at $\overline{w}^T \overline{y}$ which is given by

$$\overline{y} = \begin{cases} \sum_{n=1}^{N_x} \alpha_n \overline{w}^T \overline{x}_n + \overline{b} > 0, & \text{ for all } \overline{x}_n \in A\\ \sum_{n=1}^{N_x} \alpha_n \overline{w}^T \overline{z}_n + \overline{b} < 0, & \text{ for all } \overline{z}_n \in B \end{cases}$$
(4)

From equation (4), we see that it is contradicting the assumption of existence of vectors \overline{w} and \overline{b} .

(b) From Figure 1(b) we see that \exists vectors $\overline{w}^{\mathrm{T}}, \overline{b}$ such that $\overline{w}^{\mathrm{T}}\overline{x}_n + \overline{b} > 0$ for all $\overline{x}_n \in \mathcal{A}$ and $\overline{w}^{\mathrm{T}}\overline{z}_n + \overline{b} < 0$ for all $\overline{z}_n \in \mathcal{B}$. Now, we have to show $\mathcal{A} \cap \mathcal{B} = \phi$. We know that existence of \overline{w} and \overline{b} guarantees $\overline{x} = \sum_{n=1}^{N_x} \alpha_n \overline{x}_n \notin \mathcal{B}$ and $\overline{z} = \sum_{m=1}^{N_z} \beta_m \overline{z}_m \notin \mathcal{A}$ implying $\mathcal{A} \cap \mathcal{B} = \phi$.

Problem 3.

Solution. (a) Let \overline{x} be the input with true class C_k . The total expected loss with $L_{kk} = 0$ for k = 1, ..., N is given by

$$\mathbb{E}(L) = \sum_{k=1}^{N} \sum_{j=1}^{N} \int_{\mathcal{C}_{j}} L_{kj} P\left(\overline{x} \in \mathcal{C}_{k} \mid \overline{x}\right) P(\overline{x}) \mathrm{d}\overline{x}.$$
(5)

Equation (5)

(b) The optimal rule for assigning class labels

$$j^{\star} = \min_{j} \left(\sum_{k=1}^{N} \int_{\mathcal{C}_{j}} L_{kj} P\left(\overline{x} \in \mathcal{C}_{k} \mid \overline{x}\right) P(\overline{x}) \mathrm{d}\overline{x} \right)$$
(6)

Problem 4.

Solution. (a) The figure 2 shows the decision boundary for the AND and OR operations.

Figure 2

(b) We know that the output of the **XOR** operation forms a non-linearly separable class as shown in Figure 3. Therefore, it is not possible to separate the two classes using perceptron.

Figure 3: The two classes are non-linearly separable.

Figure 4: Full moon and crescent moon shapes with $R_{\rm m} = 5$, $R_{\rm in} = 10$, $R_{\rm out} = 15$, and D = 0.

Problem 5.

Solution. (a) The required data points are generated as shown in Figure 4

- (b) The value of D is varied from 0 to 7 and the resulting perceptron decision boundary is shown in Figures 5a-5h.
- (c) With D = 7, five different initial weight vectors were chosen and the resulting perceptron decision boundary is shown in Figures 6a-6e. The decision boundaries were different with different initial conditions.
- (d) With D = 7, the sequence in which the input is presented is randomized and the resulting perceptron decision boundary is shown in Figures 7a-7e. We do not observe any significant difference in the decision boundaries.
- (e) A Gaussian noise with mean 0 and standard deviation ranging from 1 to 3.1 is added to the dataset generated as shown in Figure 4 and the resulting perceptron decision boundary is shown in Figures 8a-8d. The stopping criterion is error threshold set to 10⁻⁶. The linear classification is not possible with the increase in standard deviation.
- (f) The initial learning rate is varied from 0.1 to 1 in steps of 0.1. The initial weight vector was set to $[0,0]^{T}$. The error threshold as stopping criterion is set to 10^{-6} . The number

of epochs required for convergence is 3 for all initial learning rates. This indicates that the convergence is independent of the learning rate.

(a)

(c)

Figure 8

(d)