Homework \#1 solution key

Prayag
Neural networks and learning systems-I

February 25, 2019

Problem 1.

Solution. The output y is given by

$$
\begin{equation*}
y(n)=\phi\left(w_{O 1} y_{1}(n)+w_{O 2} y_{2}(n)\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& y_{1}(n)=\phi\left(x_{1} w_{11}+x_{2} w_{12}+y_{1}(n-1) w_{11}^{\prime \prime}+y_{2}(n) w_{12}^{\prime}\right) \tag{2}\\
& y_{2}(n)=\phi\left(x_{1} w_{21}+x_{2} w_{22}+y_{2}(n-1) w_{22}^{\prime \prime}+y_{1}(n) w_{21}^{\prime}\right) \tag{3}
\end{align*}
$$

Problem 2.

Figure 1: (a) overlapping of convex hulls A and B. (b) linearly separable convex hulls
Solution. (a) From Figure 1(a) we see that the two convex hulls are intersecting. Assume that there exist vectors \bar{w} and \bar{b} such that $\bar{w}^{\mathrm{T}} \bar{x}_{n}+\bar{b}>0$ for all $\bar{x}_{n} \in \mathrm{~A}$ and $\bar{w}^{\mathrm{T}} \bar{z}_{n}+\bar{b}<0$ for all $\bar{z}_{n} \in \mathrm{~B}$. We know that $\mathrm{A} \cap \mathrm{B} \neq \phi$ implies there exist at least one element $\bar{y} \in \mathrm{~A} \cap \mathrm{~B}$. We can write $\bar{y}=\sum_{n=1}^{\mathrm{N}_{x}} \alpha_{n} \bar{x}_{n}$ and $\bar{y}=\sum_{m=1}^{\mathrm{N}_{z}} \beta_{m} \bar{z}_{m}$ for some α and β satisfying the conditions as mentioned in the question. We look at $\bar{w}^{\mathrm{T}} \bar{y}$ which is given by

$$
\bar{y}= \begin{cases}\sum_{n=1}^{\mathrm{N}_{x}} \alpha_{n} \bar{w}^{\mathrm{T}} \bar{x}_{n}+\bar{b}>0, & \text { for all } \bar{x}_{n} \in \mathrm{~A} \tag{4}\\ \sum_{n=1}^{\mathrm{N}_{x}} \alpha_{n} \bar{w}^{\mathrm{T}} \bar{z}_{n}+\bar{b}<0, & \text { for all } \bar{z}_{n} \in \mathrm{~B}\end{cases}
$$

From equation (4), we see that it is contradicting the assumption of existence of vectors \bar{w} and \bar{b}.
(b) From Figure 1(b) we see that \exists vectors $\bar{w}^{\mathrm{T}}, \bar{b}$ such that $\bar{w}^{\mathrm{T}} \bar{x}_{n}+\bar{b}>0$ for all $\bar{x}_{n} \in \mathrm{~A}$ and $\bar{w}^{\mathrm{T}} \bar{z}_{n}+\bar{b}<0$ for all $\bar{z}_{n} \in \mathrm{~B}$. Now, we have to show $\mathrm{A} \cap \mathrm{B}=\phi$. We know that existence of \bar{w} and \bar{b} guarantees $\bar{x}=\sum_{n=1}^{\mathrm{N}_{x}} \alpha_{n} \bar{x}_{n} \notin \mathrm{~B}$ and $\bar{z}=\sum_{m=1}^{\mathrm{N}_{z}} \beta_{m} \bar{z}_{m} \notin \mathrm{~A}$ implying $\mathrm{A} \cap \mathrm{B}=\phi$.

Problem 3.

Solution. (a) Let \bar{x} be the input with true class \mathcal{C}_{k}. The total expected loss with $L_{k k}=0$ for $k=1, \ldots, N$ is given by

$$
\begin{equation*}
\mathbb{E}(L)=\sum_{k=1}^{N} \sum_{j=1}^{N} \int_{\mathcal{C}_{j}} L_{k j} P\left(\bar{x} \in \mathcal{C}_{k} \mid \bar{x}\right) P(\bar{x}) \mathrm{d} \bar{x} \tag{5}
\end{equation*}
$$

Equation (5)
(b) The optimal rule for assigning class labels

$$
\begin{equation*}
j^{\star}=\min _{j}\left(\sum_{k=1}^{N} \int_{\mathcal{C}_{j}} L_{k j} P\left(\bar{x} \in \mathcal{C}_{k} \mid \bar{x}\right) P(\bar{x}) \mathrm{d} \bar{x}\right) \tag{6}
\end{equation*}
$$

Problem 4.

Solution. (a) The figure 2 shows the decision boundary for the AND and OR operations.

Figure 2
(b) We know that the output of the XOR operation forms a non-linearly separable class as shown in Figure 3. Therefore, it is not possible to separate the two classes using perceptron.

Figure 3: The two classes are non-linearly separable.

Figure 4: Full moon and crescent moon shapes with $R_{\mathrm{m}}=5, R_{\mathrm{in}}=10, R_{\text {out }}=15$, and $D=0$.

Problem 5.

Solution. (a) The required data points are generated as shown in Figure 4
(b) The value of D is varied from 0 to 7 and the resulting perceptron decision boundary is shown in Figures 5a-5h.
(c) With $D=7$, five different initial weight vectors were chosen and the resulting perceptron decision boundary is shown in Figures 6a-6e. The decision boundaries were different with different initial conditions.
(d) With $D=7$, the sequence in which the input is presented is randomized and the resulting perceptron decision boundary is shown in Figures 7a-7e. We do not observe any significant difference in the decision boundaries.
(e) A Gaussian noise with mean 0 and standard deviation ranging from 1 to 3.1 is added to the dataset generated as shown in Figure 4 and the resulting perceptron decision boundary is shown in Figures 8a-8d. The stopping criterion is error threshold set to 10^{-6}. The linear classification is not possible with the increase in standard deviation.
(f) The initial learning rate is varied from 0.1 to 1 in steps of 0.1 . The initial weight vector was set to $[0,0]^{\mathrm{T}}$. The error threshold as stopping criterion is set to 10^{-6}. The number

Figure 5
of epochs required for convergence is 3 for all initial learning rates. This indicates that the convergence is independent of the learning rate.

Figure 6

Figure 7

Figure 8

