Homework #3 solutions

Prayag Linear and non-linear programming-1

April 27, 2018

Problem 1.

Solution. Let us consider the LPP

maximize
$$3p_1 + 6p_3$$

subject to $2p_1 + 3p_2 - p_3 \ge 1$
 $3p_1 + p_2 - p_3 \le -1$
 $-p_1 + 4p_2 + 2p_3 \le 0$
 $3p_1 + p_2 - p_3 \le -1$
 $p_1 - 2p_2 + p_3 = 0$
 $p_1 \le 0$
 $p_2 \ge 0$
 p_3 is free

Problem 3.

Solution.

- (a) False: If the dual basic feasible solution associated with x^* is infeasible, then the optimal cost is $-\infty$.
- (b) True: Phase I is always feasible
- (c) True: Let p_i be the free variable corresponding to the i^{th} equality constraint. Removal of i^{th} equality constraint results in absence of p_i . The objective function of the dual is

$$p_1b_1 + \dots + p_{i-1}b_{i-1} + p_{i+1}b_{i+1} + \dots + p_mb_m \tag{1}$$

which is same as the objective function with $p_i = 0$.

(d) True: follows directly from weak duality theorem.

Problem 4.

Solution.

• $\min_{x \in \mathbb{R}^n} \max_{i=1,\dots,m} \left(p_i a_i^{\mathrm{T}} x - p_i b_i \right) = p_i v$. Using the given data, we get

$$\min_{x \in \mathbb{R}^n} \max_{i=1,\dots,m} (-p_i b_i) = p_i v$$

$$\max_{i=1,\dots,m} (-p_i b_i) = p_i v$$
(3)

$$\max_{i=1,\dots,m} \left(-p_i b_i \right) = p_i v \tag{3}$$

But we know that $0 \le p_i \le 1$ using the upper bound we get

$$-p^{\mathrm{T}}b \le v \tag{4}$$

• Write the dual of the given problem and use strong duality theorem to show that the optimal cost is v.

Problem 5.

Solution.

- 1. Assume that (a) is true. Then we have $p^{T}Ax \geq 0$. But we know that Ax = 0 this results in $P^{T} = 0^{T}$. Therefore, (b) is false.
- 2. Assume that (a) is false. Then consider the following maximization problem

maximize
$$0^{\mathrm{T}}x$$

subject to
$$Ax = 0$$

$$x \ge 0$$

which is infeasible. Therefore, from Farka's lemma we know that $\exists p$ such that $p^TA > 0$ 0^{T} .

Problem 6.

Solution. The proof has been discussed in class. Please refer to class notes.

Problem 7.

Solution.

- (a) Let x be optimal point, d be the feasible direction and $\theta > 0$. Define $y = x + \theta d$. We know that $c^{\mathrm{T}} \leq c^{\mathrm{T}}y$. This shows $c^{\mathrm{T}}d \geq 0$. Now consider $c^{\mathrm{T}}d \geq 0$. We know that $d = \frac{1}{\theta}(y x)$. Therefore, $c^{\mathrm{T}}d$ will result in $c^{\mathrm{T}}y \geq c^{\mathrm{T}}x$. Therefore, x is optimal.
- (b) Let d be a non-zero feasible direction and let x be unique optimal point. We have $c^{\mathrm{T}}x < c^{\mathrm{T}}(x+\theta d)$ which results in $c^{\mathrm{T}}d > 0$. Let $c^{\mathrm{T}}d > 0$. Define $d = \frac{1}{\theta}(y-x)$. We see that $c^{\mathrm{T}}\frac{1}{\theta}(y-x) > 0$ results in $c^{\mathrm{T}}y > c^{\mathrm{T}}x$.

Problem 8.

Solution. Consider a point $x \in P$. Let $\theta > 0$ and let $y = x + \theta d$. For d to be a feasible direction, we need Ay = b and $y \ge 0$. It is easy to see that d is feasible iff Ad = 0. Also, $y \ge 0 \implies x + \theta d \ge 0$. Now, with $x_i = 0$ we see that $d_i \ge 0$.

Problem 9.

Solution. The set P is characterized by the following conditions:

1. $x_1 + x_2 + x_3 = 1$

2. $x \ge 0$

Let $y = x + \theta d$, with x = (0, 0, 1) we have $y = (\theta d_1, \theta d_2, 1 + \theta d_3)$. For $y \in P$, we require

$$(d_1 + d_2 + d_3) = 0 (5)$$

and

$$d_1 > 0, \tag{6}$$

$$d_2 \ge 0,\tag{7}$$

$$1 + \theta d_3 \ge 0 \tag{8}$$

From (5) and (8), we have

$$d_3 = -d_1 - d_2 \tag{9}$$

Combining (6), (7) and (9) in (8) we get

$$\theta \le \frac{1}{d_1 + d_2} \tag{10}$$

Therefore, feasible direction is (d_1, d_2, d_3) given by (6), (7), (8) with θ as in (10).

Problem 10.

Solution. The proof has been discussed in class. Please refer to class notes.