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Problem 1: Examine if the following statements are true or false with correct reasoning. Random

guessing or incorrect reasoning fetches zero credit. A statement is true if it is generic for all cases. A

counter example is enough to make it false. All sub-parts of this problem carry equal credit.

1. Since downsampling and upsampling operations are not time invariant, all multi-rate systems

that use downsamplers and upsamplers are non-LTI.

2. Let vi = (ai1, ai2, · · · , aiN ) be a set of vectors for i = 1, 2, · · ·N . Let ui = (a1i, a2i, · · · , aNi) be
another set of vector i = 1, 2, · · ·N . We de�ne two spaces V and U as V = Span ({v1, v2, · · · , vN})
and U = Span ({u1, u2, · · · , uN}). We know that dim (V) < N . Then dim (U) > dim (V).

3. The inverse of a stable �lter is also stable.

4. Let a signal s (t) be passed through a BIBO stable LTI system with impulse response h (t) to get
the output y (t). Let Es, Eh and Ey be the energies in s (t), h (t) and y (t) respectively. Then

Ey ≤ EsEh.

5. Let X (t) and Y (t) be two independent W.S.S processes. Their linear combination Z (t) =
aX (t) + bY (t) , a, b ∈ R is also a W.S.S. process.

(25 pts.)

Solution:

Part 1: (False) Upsampling by rate 2 followed by rate 2 downsampling gives the original signal back.

Therefore, this system is LTI.

Part 2: (False) V and U are row and column spaces of a matrix respectively, where aij are the

elements of the matrix. We can disprove the claim with the example matrix

[
1 2
1 2

]
: v1 = v2 = (1, 2).

Therefore, dim (V) = 1. For this example, u2 = 2u1 = (2, 2). Since u1 and u2 are linearly dependent,

dim (U) = 1. Therefore, dim (U) ≯ dim (V).
Part 3: (False) H (z) = 2− z−1 is FIR and hence stable. Its inverse 1

2−z−1 has a pole at z = 0.5 i.e.,

inside unit circle. Therefore the inverse is not sable.

Part 4: (False) There are several simple counter examples to disprove this:

Example 1: Let s [n] = h [n] =

{
1, n = 0, 1

0, otherwise
. This gives y [n] =





1, n = 0, 2

2, n = 1

0, otherwise

. Therefore,

Es = Eh = 2 and Ey = 6 > EsEh = 4.

Example 2: Let s (t) = h (t) =

{
1, −1 ≤ t ≤ 1

0, otherwise
. This gives y (t) =

{
2− |t| , −2 ≤ t ≤ 2

0, otherwise
. Here,

Es = Eh = 2 and Ey =
16
3 > EsEh = 4.

Example 3: If S (f), H (f) and Y (f) are the frequency responses of s (t), h (t) and y (t) respectively,
we have

Y (f) = S (f)H (f)

and

Es =

∞∫

−∞

|S (f)|2 df, Eh =

∞∫

−∞

|H (f)|2 df, Ey =

∞∫

−∞

|Y (f)|2 df.

We prove using following example: |S (f)|2 = |H (f)|2 =

{
f 0 ≤ f ≤ 1,

0 otherwise.
This gives us Es = Eh =

1∫
0

fdf = 1
2 and Ey =

1∫
0

|f |2 df = 1
3 . In this case Ey =

1
3 ≥ 1

4 = EsEh.
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Note 1: Using Cauchy-Schwartz inequality, we get

∣∣∣∣∣∣

∞∫

−∞

|Y (f)| df

∣∣∣∣∣∣

2

≤



∞∫

−∞

|S (f)|2 df





∞∫

−∞

|H (f)|2 df = EsEh


 .

But, Ey = ‖Y (f)‖2l2 =
∞∫
−∞
|Y (f)|2 df which cannot be related to

∣∣∣∣∣
∞∫
−∞
|Y (f)| df

∣∣∣∣∣

2

= ‖Y (f)‖2l1 as

‖Y (f)‖2l1 ≤ ‖Y (f)‖2l2 i.e.,

∣∣∣∣∣
∞∫
−∞
|Y (f)| df

∣∣∣∣∣

2

≤ Ey. This does not give the desired result. From Cauchy-

Schwartz inequality, the smallest value of EsEh is ‖Y (f)‖2l1 which is achievable when S (f) = kH (f),
we can disprove the statement by choosing any arbitrary S (f) = kH (f) where |S (f)| is not a constant
in f . Equivalently, we can take any time domain signals s (t) = h (t) such that |S (f)| is not a constant.

Part 5: (True) E [Z (t)] = aE [X (t)] + bE [X (t)] = aµX + bµY .

E [Z (t)Z∗ (t+ τ)] = |a|2 E [X (t)X∗ (t+ τ)] + ab∗E [X (t)Y ∗ (t+ τ)]

+ a∗bE [Y (t)X∗ (t+ τ)] + |b|2 E [Y (t)Y ∗ (t+ τ)]

= |a|2RX (τ) + |b|2RY (τ) + ab∗µXµ
∗
Y + a∗bµ∗XµY .

Since E [Z (t)] and E [Z (t)Z∗ (t+ τ)] are independent of t, Z (t) is also a W.S.S. process.
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Problem 2: This problem has two parts:

1. A discrete-time system with forcing function f [n] and output y [n] is represented using state

variables u [n] and w [n] as

w [n+ 1] = 2u [n] + 3f [n] ,

u [n+ 1] = w [n] + 2f [n] ,

y [n] = u [n] + 3w [n] + f [n] .

What are the modes of the system? What is the the transfer function of the system? What are

the state space parameters (A, b, c, d) of the system? (10 pts.)

2. Consider a cascade of two LTI systems A and B with impulse responses HA (z) = 1−z−1

(2+z−1)(1−3z−1)

and HB (z) = 1−3z−1

1−z−1 respectively. Write down the time di�erence equations representing the

systems A and B. Combine the two di�erence equations to obtain a time di�erence equation for

the overall cascaded system. Compare the obtained equation with the overall impulse response

of the cascaded system. (10 pts.)

Solution:

Part 1: Taking z-transform of the given equations, we get

zW (z) = 2U (z) + 3F (z) (1)

zU (z) =W (z) + 2F (z) (2)

Y (z) = U (z) + 3W (z) + F (z) . (3)

Multiplying (2) by z on both sides and substituting zW (z) from (1), we get

z2U (z) = zW (z) + 2zF (z) = 2U (z) + (2z + 3)F (z)

=⇒ U (z) =
2z + 3

z2 − 2
F (z) (4)

Using this in (2) to obtain W (z):

W (z) = zU (z)− 2F (z) =
z (2z + 3)− 2

(
z2 − 2

)

z2 − 2
F (z) =

3z + 4

z2 − 2
F (z) . (5)

Using (4) and (5) in (3), we get

Y (z)

F (z)
=

(2z + 3) + 3 (3z + 4) + z2 − 2

z2 − 2
=
z2 + 11z + 13

z2 − 2
=

1 + 11z−1 + 13z−2

1− 2z−2
.

Therefore, the transfer function of the system is 1+11z−1+13z−2

1−2z−2 . The modes of the system are ±
√
2.

De�ning v [n] =

[
w [n]
u [n]

]
, we can rewrite the given set of equations as

v [n+ 1] =

[
0 1
2 0

]

︸ ︷︷ ︸
A

v [n] +

[
3
2

]

︸︷︷︸
b

f [n] , and y [n] =
[
3 1

]
︸ ︷︷ ︸
cT

v [n] + 1︸︷︷︸
d

f [n] .

Therefore, the state variables of the system are A =

[
0 1
2 0

]
, b =

[
3
2

]
, cT =

[
3 1

]
, d = 1.
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Part 2: Let x [n] be the input to the cascaded system, w [n] be the output of the system A, and y [n]
be the output of the entire cascaded system. From the impulse response of the systems, we have

W (z)

X (z)
=

1− z−1
(2 + z−1) (1− 3z−1)

,
Y (z)

W (z)
=

1− 3z−1

1− z−1 .

=⇒
(
2− 5z−1 − 3z−2

)
W (z) =

(
1− z−1

)
X (z)

and
(
1− z−1

)
Y (z) =

(
1− 3z−1

)
W (z)

Taking the inverse z-transform of the above equations, we get the time di�erence equations as

2w [n]− 5w [n− 1]− 3w [n− 2] = x [n]− x [n− 1] (6)

y [n]− y [n− 1] = w [n]− 3w [n− 1] (7)

Similarly, the transfer function of the overall cascaded system is HA (z)HB (z) = 1
2+z−1 . Therefore,

the time-di�erence equation of the cascaded system is

2y [n] + y [n− 1] = x [n]

=⇒ 2y [n] + y [n− 1]− x [n] = 0 (8)

Equation (7) is true for all n. Therefore,

w [n]− 3w [n− 1] = y [n]− y [n− 1] , (9)

and w [n− 1]− 3w [n− 2] = y [n− 1]− y [n− 2] . (10)

Equation (6) can be written as

2 (w [n]− 3w [n− 1]) + (w [n− 1]− 3w [n− 2]) = x [n]− x [n− 1] .

Using (9) and (10) in the above equation, we get

2 (y [n]− y [n− 1]) + y [n− 1]− y [n− 2] = x [n]− x [n− 1]

=⇒ 2y [n]− y [n− 1]− y [n− 2] = x [n]− x [n− 1] (11)

Equation (11) gives the time di�erence equation of the cascaded system. The equation (11) can be

written as

(2y [n] + y [n− 1]− x [n])− (2y [n− 1] + y [n− 2]− x [n− 1]) = 0 (12)

We can see similarity in (8) and (12). If we de�ne u [n] = 2y [n] + y [n− 1] − x [n], the equation

(12) becomes u [n] = u [n− 1]. Therefore u [n] = c for some constant c. In order to prove that (8) and

(12) are same, we have to show that c = 0 is the only possibility.

Since the ROC of
∞∑
k=0

z−k is |z| < 1 and the ROC of
1∑

k=−∞
z−k is |z| > 1, we claim that c = 0 is the

only value for which W (z) =
∞∑

k=−∞
cz−k can be de�ned on z plane. Therefore, c = 0 =⇒ u [n] = 0.

Hence, we can say that (12) implies (8).
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Problem 3: This problem has two parts:

1. Let S be a �nite dimensional vector space and V1 ⊂ S and V2 ⊂ S be two sub-spaces in S. Show
that dim (V1 + V2) = dim (V1) + dim (V2)− dim (V1 ∩ V2). (13 pts.)

2. Consider the following three signals given by

s1 (t) =





1, 0 ≤ t ≤ 0.25,

−1. 0.25 < t ≤ 0.75,

1, 0.75 < t ≤ 1,

0, otherwise,

s2 (t) =





1, 0 ≤ t ≤ 0.5,

−1, 0.5 < t ≤ 1

0 otherwise,

, s3 (t) =

{
t− 0.5, 0 ≤ t ≤ 1,

0 otherwise,
.

Find an appropriate orthonormal basis for the signal space spanned by the three signals and

represent the three signals as points in the signal space. What is the least squares approximation

of the signal

s (t) =

{
sin (2πt) 0 ≤ t ≤ 1,

0, otherwise,

in the signal space. Plot the approximated signal as a function of time. (12 pts.)

Solution:

Part 1:

We know that V1∩V2 is a sub-space. Let R = {y
1
, ..., y

l
} be an orthogonal basis of V1∩V2. Every �nite

linearly independent subset of V can be extended to a basis of V. Let S = {u1, ..., um} be an orthogonal
set such that S ∪R is an orthogonal basis for V1. Similarly, let T = {w1, ..., wn} be an orthogonal set

such that T ∪R is an orthogonal basis for V2. Therefore, dim (V1) = l +m and dim (V2) = l + n. Our
goal is to show that

S ∪ T ∪R = {y
1
, ..., y

l
, u1, ..., um, w1, ..., wn} is a basis of V1 + V2. (13)

We need to show that V1+V2 = span (S ∪ T ∪R) and S∪T ∪R is a linearly independent set. Assuming

that this has been shown, then

dim(V1 + V2) + dim(V1 ∩ V2) = (l +m+ n) + l = (l +m) + (l + n) = dim(V1) + dim(V2).

Let us now show the result in equation (13). Let v ∈ V1 + V2. Then v = v1 + v2 where v1 ∈ V1, and
v2 ∈ V2. Since v1 ∈ span(S ∪ R) and v2 ∈ span(T ∪ R), it follows that v ∈ span(S ∪ T ∪ R) and so

V1 + V2 = span(S ∪ T ∪R). Suppose that
l∑

i=1

aiyi +
m∑

i=1

biui +
n∑

i=1

ciwi = 0

where ai, bi, ci ∈ R. Then,
n∑

i=1

ciwi

︸ ︷︷ ︸
∈V2

= −
l∑

i=1

aiyi −
m∑

i=1

biui

︸ ︷︷ ︸
∈V!

∈ V1 ∩ V2.

Thus,
n∑
i=1

ciwi =
l∑

i=1
diyi, since R is a basis of V1 ∩ V2. Since T ∪ R is a basis of V2, it follows that

ci = 0, 1 ≤ i ≤ n, and di = 0, 1 ≤ i ≤ l. Now we have
l∑

i=1
aiyi +

m∑
i=1

biui = 0. Since S ∪ R is a basis
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of V1, it follows that ai = 0, 1 ≤ i ≤ l and bi = 0, 1 ≤ i ≤ m. This shows S ∪ T ∪ R is a linearly

independent set and so S ∪ T ∪R is a basis of V1 + V2.
Part 2:

We proceed with Gram-Schmidt orthonormalization of the signals to �nd an orthonormal basis.

v1(t) = s1(t)

v2(t) = s2(t)−
〈s2(t), v1(t)〉
〈v1(t), v1(t)〉

v1(t)

Now,

〈s2(t), v1(t)〉 =
∫ 1

0
s2(t)v1(t)dt

=

∫ 0.25

0
(1× 1)dt+

∫ 0.5

0.25
(−1× 1)dt+

∫ 0.75

0.5
(−1×−1)dt+

∫ 1

0.75
(1×−1)dt

= 0.25− 0.25 + 0.25− 0.25

= 0

So we get,

v2(t) = s2(t)

Now,

v3(t) = s3(t)−
〈s3(t), v1(t)〉
〈v1(t), v1(t)〉

v1(t)−
〈s3(t), v2(t)〉
〈v2(t), v2(t)〉

v2(t)

Let us �nd 〈s3(t), v1(t)〉 and 〈s3(t), v2(t)〉

〈s3(t), v1(t)〉 =
∫ 1

0
s3(t)v1(t)dt

=

∫ 0.25

0
((t− 0.5)× 1)dt+

∫ 0.75

0.25
((t− 0.5)×−1)dt+

∫ 1

0.75
((t− 0.5)× 1)dt

= 0

〈s3(t), v2(t)〉 =
∫ 1

0
s3(t)v2(t)dt

=

∫ 0.5

0
((t− 0.5)× 1)dt+

∫ 1

0.5
((t− 0.5)×−1)dt

= −0.25

〈v2(t), v2(t)〉 =
∫ 0.5

0
(1× 1)dt+

∫ 1

0.5
(−1×−1)dt

= 0.5 + 1− 0.5

= 1
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So, we get

v3(t) = s3(t) + 0.25v2(t) = s3(t) + 0.25s2(t)

v3(t) =





t− 0.25, 0 ≤ t ≤ 0.5,

t− 0.75, 0.5 < t ≤ 1

0 otherwise,

,

v1(t), v2(t) and v3(t) are orthogonal basis for the signal space spanned by s1(t), s2(t) and s3(t). We

need to normalise the vectors to get and orthonormal basis.

We get orthonormal basis u1(t), u2(t) and u3(t) as follows

u1(t) =
v1(t)

||v1(t)||
= v1(t) = s1(t)

u2(t) =
v2(t)

||v2(t)||
= v2(t) = s2(t)

u3(t) =
v3(t)

||v3(t)||

=
v3(t)√∫ 1

0 (v3(t))
2dt

=
v3(t)√∫ 0.5

0 (t− 0.25)2dt+
∫ 1
0.5(t− 0.75)2dt

=
v3(t)√

1
48

=
√
48(s3(t) + 0.25s2(t))

=
√
3(4s3(t) + s2(t))

From above we can write the following,

s1(t) = u1(t), s2(t) = u2(t) and s3(t) = −0.25u2(t) +
1√
48
u3(t)

The signals s1(t), s2(t) and s3(t) can be represented as points in signal space with respect orthonor-

mal basis {u1(t), u2(t), u3(t)} as

s1(t) = (1, 0, 0), s2(t) = (0, 1, 0) and s3(t) = (0,−0.25, 1√
48

)

To �nd the least squared approximation of signal s(t) in the signal space,

s(t) = 〈s(t), u1(t)〉u1(t) + 〈s(t), u2(t)〉u2(t) + 〈s(t), u3(t)〉u3(t)

= (

∫ 1

0
s(t)u1(t)dt)u1(t) + (

∫ 1

0
s(t)u2(t)dt)u2(t) + (

∫ 1

0
s(t)u3(t)dt)u3(t)

= 0× u1(t) +
2

π
× u2(t) + 0× u3(t)

=
2

π
u2(t)
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Therefore the least squared approximation of the signal,

s(t) =





2
π , 0 ≤ t ≤ 0.5,

− 2
π , 0.5 < t ≤ 1

0 otherwise,

,

The plot of the least squared approximation of signal s(t) is shown below,
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Problem 4: A signal s (t) with 60 Hz bandwidth and sampled at 600 Hz to obtain the samples s [n].
The signal s [n] is passed through following operations where H (z) is a low-pass �lter. How do you

choose the passband and stop band frequencies of H (z) such that the �lter order is minimized and

ŝ [n] = s [n]? Sketch the frequency responses of the signal at various stages in the system.

H (z) ↑ 2↓ 2
s [n] u [n] v [n] ŝ [n]

(15 pts.)

Solution:

Since ŝ [n] is an output of upsampler, ŝ [n] = 0 for odd n. Therefore, the given circuit cannot

reconstruct the original signal.

The bandwidth of the signal is ωB = 2π 60
600 = π

5 . The frequency responses of s [n] and u [n] are
given below

0
π
5−π

5

S
(
ejω

)

1

2π 11π
5

9π
5

ω

π

0

U
(
ejω

)

π
5−π

5 2π9π
5

11π
5

ω

π

0.5

In order to minimize the order of H (z) its transition bandwidth must be as large as possible.

Therefore, the passband frequency is ωs = π
2 . The stopband frequency is π. Following gives the

frequency response of H (z) and the signal v [n] and ŝ [n].

0

H
(
ejω

)

ωp =
π
5−π

5 2π9π
5

11π
5

ω

ωs = π

0

V
(
ejω

)

π
5−π

5 2π9π
5

11π
5

ω

π

0
π
5−π

5

Ŝ
(
ejω

)

2π 11π
5

9π
5

ω

π 6π
5

4π
5

0.5

0.5

1
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Problem 5: Consider the following fractional sampling rate converter that increases the sampling rate

by a factor 1.5. E�cient architectures of the same circuit can be obtained in two ways:

1. Architecture-1: Represent H (z) using type-2 polyphase components
{
E0

(
z3
)
, E1

(
z3
)
, E2

(
z3
)}

to obtain an e�cient architecture for the interpolation stage. Next, we represent each Ei (z)
using type-1 polyphase components

{
Ei0

(
z2
)
, Ei1

(
z2
)}

to obtain an e�cient architecture for

the decimation �lters.

2. Architecture-2: RepresentH (z) using type-1 polyphase components
{
R0

(
z2
)
, R1

(
z2
)}

to obtain

an e�cient architecture for the decimation stage. Next, we represent each Ri (z) using polyphase
components

{
Ri0

(
z3
)
, Ri1

(
z3
)
, Ri2

(
z3
)}

to obtain an e�cient architecture for the interpolation

�lters.

Express H (z) using the �lters Eij (z) from Architecture-1. Similarly, express H (z) using the �lters

Rij (z) from Architecture-2. How are the �lters Eij (z) and Rij (z) from the two architectures related?

(15 pts.)

Solution:

Architecture-1: Using type-2 polyphase decomposition of H (z) for rate 3, we have

H (z) = z−2E0

(
z3
)
+ z−1E1

(
z3
)
+ E2

(
z3
)
. (14)

Using rate-2, type-1 decomposition on Ei (z), we have

Ei (z) = Ei0
(
z2
)
+ z−1Ei1

(
z2
)
, i = 0, 1, 2. (15)

Using (15) in (14), we get

H (z) = z−2
[
E00

(
z6
)
+ z−3E01

(
z6
)]

+ z−1
[
E10

(
z6
)
+ z−3E11

(
z6
)]

+ E20

(
z6
)
+ z−3E21

(
z6
)

H (z) = E20

(
z6
)
+ z−1E10

(
z6
)
+ z−2E00

(
z6
)
+ z−3E21

(
z6
)
+ z−4E11

(
z6
)
+ z−5E01

(
z6
)
. (16)

Architecture-2: Using type-1 polyphase decomposition of H (z) for rate 2, we have

H (z) = R0

(
z2
)
+ z−1R1

(
z2
)
. (17)

Using rate-3, type-2 decomposition on Ri (z), we have

Ri (z) = z−2Ri0
(
z3
)
+ z−1Ri1

(
z3
)
+Ri2

(
z3
)
, i = 0, 1, 2. (18)

Using (18) in (17), we get

H (z) = z−4R00

(
z6
)
+ z−2R01

(
z6
)
+R02

(
z6
)
+ z−1

[
z−4R10

(
z6
)
+ z−2R11

(
z6
)
+R12

(
z6
)]

H (z) = R02

(
z6
)
+ z−1R12

(
z6
)
+ z−2R01

(
z6
)
+ z−3R11

(
z6
)
+ z−4R00

(
z6
)
+ z−5R10

(
z6
)
. (19)

Comparing the coe�cients of z6n, n ∈ Z in (16) and (19), we get E20

(
z6
)
= R02

(
z6
)
i.e, E20 (z) =

R02 (z). Similarly, comparing the coe�cients of z6n+1, n ∈ Z in (16) and (19), we get E10 (z) = R12 (z).
Continuing further comparing the coe�cients of z6n+k, n ∈ Z for k = 0, 1, 2, 3, 4, 5, we get

k = 0 =⇒ E20 (z) = R02 (z) ,

k = 1 =⇒ E10 (z) = R12 (z) ,

k = 2 =⇒ E00 (z) = R01 (z) ,

k = 3 =⇒ E21 (z) = R11 (z) ,

k = 4 =⇒ E11 (z) = R00 (z) ,

k = 5 =⇒ E01 (z) = R10 (z) .
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