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PROBLEM 1:
Consider the two channel filter bank.
(a) Obtain the conditions on the synthesis filter banks to force the aliasing to zero. (1 point)
(b) Let H0(z) = 1+z−1 and H1(z) = 1−z−1. Construct synthesis filter banks which ensure perfect
reconstruction of the input signal. (1 point)
Solution:

We note that
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(a) To force the alias term to zero, we let

F0(z) = R(z)H1(−z);F1(z) = −R(z)H0(−z) for some causal stable R(z).

(b) For perfect reconstruction, we let

F0(z) = 1 + z−1;F1(z) = −1 + z−1

which gives us x̂(n) = 4x(n− 1).



PROBLEM 2:
Obtain the Haar wavelet decomposition for the signal f(t) using the Haar basis. Indicate the
signal dimension at each subspace. Sketch the waveforms explicitly at each subspace. Obtain the
reconstructed signal in functional form after nulling out any spike of (1/8)th unit of time. Analyze
using Fourier Transform. How much of energy is lost in the recovered signal?(8 points)
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Solution:

Given
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It can be represented in graphical form as,
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f(t) can be written as,

f(t) = 2φ(4t) + φ(4t− 1)− φ(4t− 2)− 2φ(4t− 3) (1)

We will use the identities,

φ(2jt− 2k) =
1

2
{φ(2j−1t− k) + ψ(2j−1t− k)} (2)

φ(2jt− (2k + 1)) =
1

2
{φ(2j−1t− k)− ψ(2j−1t− k)} (3)

Using the above identities in eq. 1 we get,



f(t) = [φ(2t) + ψ(2t)}] +
1

2
[φ(2t)− ψ(2t)]− 1

2
[φ(2t− 1) + ψ(2t− 1)]− [φ(2t− 1)− ψ(2t− 1)]

(4)

=
3

2
φ(2t) +

1

2
ψ(2t)− 3

2
φ(2t− 1) +

1

2
ψ(2t− 1) (5)

Using identities 2 and 3 in eq. 5 we get,

f(t) =
3

4
[φ(t) + ψ(t)] +

1

2
ψ(2t)− 3

4
[φ(t)− ψ(t)] +

1

2
ψ(2t− 1) (6)

=
3

2
ψ(t) +

1

2
ψ(2t) +

1

2
ψ(2t− 1) (7)

We can see that 3
2ψ(t) belongs to W0.

1
2ψ(2t) and 1

2ψ(2t− 1) belongs to W1.

Therefore dim(V0)=0, dim(W0)=1 and dim(W1)=2. Dimensions of all higher subspaces are 0.

The wavefprms at each subspace is shown below,
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Any spike of duration 1
8 will belong to W2. But we can see that dim(W2)=0. So the reconstructed

signal will be the original signal itself. We can verify it using the following identities which are
obtained from eq. 2 and 3,

φ(2jt− k) = φ(2j+1t− 2k) + φ(2j+1t− (2k + 1)) (8)

ψ(2jt− k) = φ(2j+1t− 2k)− φ(2j+1t− (2k + 1)) (9)

Using above in eq. 7, we can verify that reconstructed signal g(t) is

g(t) = 2φ(4t) + φ(4t− 1)− φ(4t− 2)− 2φ(4t− 3)

As the reconstructed signal is the original signal itself, energy lost = 0.



Fourier analysis:

g(t) = 2φ(4t) + φ(4t− 1)− φ(4t− 2)− 2φ(4t− 3)

=⇒ G(f) =
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2
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)
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PROBLEM 3:
Consider the signal

x(t) =

{
1− |t| for − 1 ≤ t ≤ 1

0 otherwise
.

Obtain the projection of x(t) on V0 and W0 spaces of Haar multi resolution analysis. Is the
projection shift invariant? (4 points)

(b) Compute
∞∑

n=−∞
φ(t− n). (1 point)

Solution:

1−1 0

1x(t)

(a) V0 space is spanned by the interger shifts of φ(t) and W0 space is spanned by the integer shifts
of ψ(t). Projecting x(t) on V0 requires φ(t) and φ(t+1) while that on W0 requires ψ(t) and ψ(t+1).
Therefore, let the projection be

x̂(t) = a0φ(t) + a−1φ(t+ 1) + b0ψ(t) + b−1ψ(t+ 1)

The coefficients can be determined by using projections on the basis functions:

a0 =

∫ 1

0
x(t)φ(t) =

1

2

a−1 =

∫ 0

−1
x(t)φ(t+ 1) =

1

2

b0 =

∫ 1

0
x(t)ψ(t) =

1

4

b−1 =

∫ 1

0
x(t)ψ(t+ 1) = −1

4

∴ x̂(t) =
1

2
φ(t) +

1

2
φ(t+ 1) +

1

4
ψ(t)− 1

4
ψ(t+ 1)

The projected signal looks as follows.
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Projection is shift invariant for integer shifts.

(b)Summing the integer shifted versions of the scaling functions, we obtain

∞∑
n=−∞

φ(t− n) = 1.



PROBLEM 4:
The normalized DFT of an N length sequence is defined as follows:

X(k) =
1√
N

N−1∑
n=0

x(n)e−j
2π
N
kn

We wish to compute the normalized DFT {X(0), X(1), X(2), X(3)} of a length 4 sequence using
the 4 channel filter bank shown below:
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(a) Find the analysis filters {hi(n)}3i=0 and synthesis filters {gi(n)}3i=0 used to implement this filter
bank. (8 points) (b) If the analysis filters are to be made causal, what is the delay introduced by
the system? (2 points)

Solution:
(a) Let N = 4.
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Look at X(k) and yk(n), k = 0, 1, 2, 3.

yk(n) =
3∑

m=0

x(m)hk(n−m), k = 0, 1, 2, 3

After downsampling, only sample corresponding to n = 0 will go through futher system.We have

X(0) = y0(n) = x(0)h0(0) + x(1)h0(−1) + x(0)h0(−2) + x(0)h0(−3)

X(1) = y1(n) = x(0)h1(0) + x(1)h1(−1) + x(0)h1(−2) + x(0)h1(−3)

X(2) = y3(n) = x(0)h2(0) + x(1)h2(−1) + x(0)h2(−2) + x(0)h2(−3)

X(3) = y3(n) = x(0)h3(0) + x(1)h3(−1) + x(0)h3(−2) + x(0)h3(−3)

(11)

Comparing equations 10 and 11, we get

h0(n) =

[
1

2

1

2

1

2

1

2
↑

n=0

]

h1(n) =

[
j

2
− 1

2
− j

2

1

2
↑

n=0

]

h2(n) =

[
− 1

2

1

2
− 1

2

1

2
↑

n=0

]

h3(n) =

[
− j

2
− 1

2

j

2

1

2
↑

n=0

]

After upsampling, we have the following signals going through the synthesis filters:[
X(0) 0 0 0

]
[
X(1) 0 0 0

]
[
X(2) 0 0 0

]
[
X(3) 0 0 0

]
The output

x̂(n) = X(0)g0(n) +X(1)g1(n) +X(2)g2(n) +X(3)g3(n) (12)

For perfect reconstruction, x̂(n) = x(n). The normalized IDFT is given by

x(n) =
1√
N

N−1∑
k=0

X(k)ej
2π
N
kn =

1√
4

3∑
k=0

X(k)ej
2π
4
kn =

1

2

3∑
k=0

X(k)ej
π
2
kn (13)
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1

2
X(0) +

1

2
X(1) +

1

2
X(2) +

1

2
X(3)
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1

2
X(0) + j

1

2
X(1)− 1

2
X(2)− j 1

2
X(3)

x(2) =
1

2
X(0)− 1

2
X(1) +

1

2
X(2)− 1

2
X(3)

x(3) =
1

2
X(0)− j 1

2
X(1)− 1

2
X(2) + j

1

2
X(3)

(14)

Comparing equations 13 and 14, we get

g0(n) =

[
1

2

1

2

1

2

1

2
↑

n=0

]

g1(n) =

[
− j

2
− 1

2

j

2

1

2
↑

n=0

]

g2(n) =

[
− 1

2

1

2
− 1

2

1

2
↑
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[
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2
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1
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↑
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]

(b) From equation 12, we note that delay is due to the {gi(n)}3i=0 filters. Therefore, the delay is 4
units.



PROBLEM 5:
Problem 5.19 from the text P. P. Vaidyanathan (Multirate systems and filter banks). (4+3+3=10
points)
Solution:

(a) Given a 2 channel QMF filter bank. Analysis filters are given as H1(z) = H0(−z). Synthesis
filters F0(z) = H0(z) and F1(Z) = −H1(z).

x(n)

H0(z)

H1(z)

F0(z)

F1(z)

2

2

2

2

x̂(n)

x0(n)

x1(n)
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v1(n)

y0(n)
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The signals at various nodes of the figure are

X0(z) = H0(z)X(z)

X1(z) = H1(z)X(z)

Y0(z) = X0(z)+X0(−z)
2

Y1(z) = X1(z)+X1(−z)
2

X̂(z) = F0(z)Y0(z) + F1(z)Y1(z) = 1
2 [X0(z)F0(z) +X1(z)F1(z)] + 1

2 [X0(−z)F0(z) +X1(−z)F1(z)]

=⇒ X̂(z) = 1
2X(z) [H0(z)F0(z) +H1(z)F1(z)] + 1

2X(−z) [H0(−z)F0(z) +H1(−z)F1(z)]

=⇒ ˆ2X(z) = X(z) [H0(z)F0(z) +H1(z)F1(z)] +X(−z) [H0(−z)F0(z) +H1(−z)F1(z)]

Above can be written in matrix form as

ˆ2X(z) =
[
X(z) X(−z)

] [ H0(z) H0(−z)
H0(−z) H0(z)

] [
F0(z)
F1(z)

]

AC matrix H(z) =

[
H0(z) H0(−z)
H0(−z) H0(z)

]
.

det(H(z))=|
[

H0(z) H0(−z)
H0(−z) H0(z)

]
| = H2

0 (z)−H2
0 (−z)

(b) T (z) = X̂(z)
X(z) = 1

2X(z) [H0(z)F0(z) +H1(z)F1(z)] + 1
2X(−z) [H0(−z)F0(z) +H1(−z)F1(z)]

Now putting F0(z) = H0(z) and F1(Z) = −H1(z) in above equation,

T (z) = 1
2X(z) [H0(z)H0(z)−H1(z)H1(z)] = 1

2X(z) [H0(z)H0(z)−H0(−z)H0(−z)]
=⇒ T (z) = 1

2X(z)
[
H2

0 (z)−H2
0 (−z)

]
= 1

2X(z)× det(H(z))

Therefore T (z) is 0 for some z if and only if det(H(z))=0



(c)Given,

H0(z) =
∑N

n=0 h(n)z−n and N is even.

h(n) is real with h(n) = h(N − n).

Taking Z-transform we get,

H0(z) = zNH0(z
−1)

Therefore, H0(−z) = (−z)NH0(−z−1) = zNH0(−z−1) as N is even.

Taking z = e
jπ
2 we get,

H0(−e
jπ
2 ) = (e

jπ
2 )NH0(−e−

jπ
2 )

=⇒ H0(−e
jπ
2 ) = e

jNπ
2 H(e

jπ
2 ) as H0(−e−

jπ
2 ) = H(e

jπ
2 ).

Now det(H(z))=
[
H2

0 (z)−H2
0 (−z)

]
Therefore, det(H(e

jπ
2 ))=

[
H2

0 (e
jπ
2 )−H2

0 (−e jπ2 )
]

= H2
0 (e

jπ
2 )− e jNπ2 ×2H2

0 (−e jπ2 )

=⇒ det(H(e
jπ
2 )) = H2

0 (e
jπ
2 )− ejNπH2

0 (−e jπ2 )

As N is even ejNπ = 1

=⇒ det(H(e
jπ
2 )) = H2

0 (e
jπ
2 )−H2

0 (−e jπ2 ) = 0

Therefore H(z) is singular for z = e
jπ
2 .



PROBLEM 6:
Problem 11.15 from the text P. P. Vaidyanathan (Multirate systems and filter banks). (5 points)
Solution:

Given Hs(e
jω
2 ) and Gs(e

jω
2 )

π 3π

−π π 3π 5π

−π−3π !

!

Hs(e
j!
2 )

Gs(e
j!
2 )

Given φ(ω) and ψ(ω)

!

!

φ(!)

 (!)

1

1

−π π

−π−2π π 2π

Wavelet basis function ψkl(t) = 2−
k
2ψ(2−kt− l) as given in the question.

To prove that ψkl(t) forms an orthonormal set, we have to show that,

〈ψkl1(t), ψkl2(t)〉 =

{
0, l1 6= l2

1, l1 = l2

We have

ψ(t)←→ ψ(ω)

ψ(t− l)←→ e−jωlψ(ω)

ψ(2−kt− l)←→ 2ke−j2
kωlψ(2kω)

2−
k
2ψ(2−kt− l)←→ 2

k
2 e−j2

kωlψ(2kω)

Now, let’s evaluate 〈ψkl1(t), ψkl2(t)〉.



〈ψkl1(t), ψkl2(t)〉 =

∫ ∞
−∞

ψkl1(t)ψkl2(t)dt

=
1

2π
[ψkl1(ω) ~ ψkl2(ω)] atω = 0

=
1

2π

∫
T
ψkl1(T )ψkl2(ω − T )dT

=
1

2π

∫
T
ψkl1(T )ψkl2(−T )dT sinceω = 0

ψkl(ω) can be represented as,

!

 kl(!)

2
k

2e−j2k!l

−

π

2k
−

2π

2k
π

2k
2π

2k

Therefore,

〈ψkl1(t), ψkl2(t)〉 =
1

2π

∫ − π

2k

− 2π

2k

2
k
2 e−j2

kT l1 × 2
k
2 ej2

kT l2dT +
1

2π

∫ 2π

2k

π

2k

2
k
2 e−j2

kT l1 × 2
k
2 ej2

kT l2dT

=
1

2π

∫ − π

2k

− 2π

2k

2ke−j2
kT (l1−l2)dT +

1

2π

∫ 2π

2k

π

2k

2ke−j2
kT (l1−l2)dT

Substituting 2kT = p we get,

〈ψkl1(t), ψkl2(t)〉 =
1

2π

∫ −π
−2π

e−jp(l1−l2)dp+
1

2π

∫ 2π

π
e−jp(l1−l2)dp

Substituting p = q − 2π in the first integral and p = q + 2π in the second and noting that
e−j(q−2π)(l1−l2) = e−jq(l1−l2) and e−j(q+2π)(l1−l2) = e−jq(l1−l2) , we get,

〈ψkl1(t), ψkl2(t)〉 =
1

2π

∫ π

0
e−jq(l1−l2)dq +

1

2π

∫ 0

−π
e−jq(l1−l2)dq

=
1

2π

∫ π

−π
e−jq(l1−l2)dq

= δ(l2 − l1)

=

{
1, for l1 = l2

0, for l1 6= l2

Therefore ψkl(t) forms an orthonormal set.



PROBLEM 7:
(a) Represent the Haar wavelet decomposition and reconstruction upto second scale as non uniform
filter bank (i.e., decimation and upsampling rates are non uniform across different channels). What
are the analysis filters Hi(z) and synthesis filters Fi(z) for this filter bank. (4 points)
(b) Using the multirate theory in the frequency domain, show that this filter bank achieves perfect
reconstruction. (3 points)
(c) Test which of the special properties given below are satisfied by the filter bank. (2 points)

1. Strictly complementary

2. Power complementary

3. All pass complementary

4. Doubly complementary

(d) Are they Nyquist-m? (1 point)

Solution:
We can simplify the structure of Haar wavelet and decomposition as

x(n)

2H(z)

2G(z)

2G(z)

2H(z)

v0(n)

v2(n)

v1(n)

Using Nobel identities

x(n)

2G(z)
v0(n)

v2(n)

v1(n)

H(z)

4G(z2)

4H(z2)

This simplifies the analysis side to

H0(z)

x(n)

4

4

v0(n)

v1(n)

v2(n)

2

H2(z)

H1(z)



Similarly the synthesis part can be simplified to

4

4

2 F0(z)

F2(z)

F1(z) x̂(n)

v2(n)

v0(n)

v1(n)

s2(n)

s1(n)

s0(n)

(a)We have for the analysis side,

H(z) =
1 + z−1√

2
;G(z) =

1− z−1√
2

H2(z) = H(z)H(z2) =
1 + z−1 + z−2 + z−3

2

H1(z) = H(z)G(z2) =
1 + z−1 − z−2 − z−3

2

H0(z) = G(z) =
1− z−1√

2

Similarly for the synthesis side,

Hs(z) =
1 + z√

2
;Gs(z) =

1− z√
2

F2(z) = Hs(z)Hs(z
2) =

1 + z + z2 + z3

2

F1(z) = Hs(z)Gs(z
2) =

1 + z − z2 − z3
2

F0(z) = Gs(z) =
1− z√

2

(b)We have ω4 = e−j2π/4 = e−jπ/2;ω2 = e−j2π/2 = e−jπ.

V2(z) =
1

4

3∑
k=0

X(z
1
4ωk4 )H2(z

1
4ωk4 )

V1(z) =
1

4

3∑
k=0

X(z
1
4ωk4 )H1(z

1
4ωk4 )

V0(z) =
1

2

1∑
k=0

X(z
1
2ωk2 )H0(z

1
2ωk2 )

We can write expressions for S2(z), S1(z) and S0(z) as,



S2(z) =
1

4

3∑
k=0

X(zωk4 )H2(zω
k
4 )

S1(z) =
1

4

3∑
k=0

X(zωk4 )H1(zω
k
4 )

S0(z) =
1

2

1∑
k=0

X(zωk2 )H0(zω
k
2 )

where,

ωk4 =


1

j

−1

−j

k = 0

k = 1

k = 2

k = 3

ωk4 =

{
1

−1

k = 0

k = 1

We know

X̂(z) = S2(z)F2(z) + S1(z)F1(z) + S0(z)F0(z)

=
F2(z)

4
[X(z)H2(z) +X(jz)H2(jz) +X(−z)H2(−z) +X(−jz)H2(−jz)]

+
F1(z)

4
[X(z)H1(z) +X(jz)H1(jz) +X(−z)H1(−z) +X(−jz)H1(−jz)]

+
F0(z)

2
[X(z)H0(z) +X(−z)H0(−z)]

This can be rearranged as,

X̂(z) = X(z)

[
F2(z)H2(z)

4
+
F1(z)H1(z)

4
+
F0(z)H0(z)

2

]
+ X(jz)

[
F2(z)H2(jz)

4
+
F1(z)H1(jz)

4

]
+ X(−z)

[
F2(z)H2(−z)

4
+
F1(z)H1(−z)

4
+
F0(z)H0(−z)

2

]
+ X(−jz)

[
F2(z)H2(−jz)

4
+
F1(z)H1(−jz)

4

]

Plugging in the values of the analysis and synthesis filters we find that



[
F2(z)H2(z)

4
+
F1(z)H1(z)

4
+
F0(z)H0(z)

2

]
= 1[

F2(z)H2(jz)

4
+
F1(z)H1(jz)

4

]
= 0[

F2(z)H2(−z)
4

+
F1(z)H1(−z)

4
+
F0(z)H0(−z)

2

]
= 0[

F2(z)H2(−jz)
4

+
F1(z)H1(−jz)

4

]
= 0

Thus we find that,

X̂(z) = X(z)

which shows that we achieve perfect reconstruction.

(c) (i) Strictly complementary: We observe that

2∑
i=0

Hi(z) = 1 +
1√
2

+ z−1
[
1− 1√

2

]

2∑
i=0

Fi(z) = 1 +
1√
2

+ z

[
1− 1√

2

]

So the filters are not strictly complementary as their summation is not a pure delay.

(ii) All pass complementary:∑3
i=0Hi(z) and

∑3
i=0 Fi(z) are not all pass functions. So they filters are not all pass complementary.

(iii) Power complementary: We observe that

2∑
i=0

|Hi(z)|2 = H0(z)H
∗
0 (z) +H1(z)H

∗
1 (z) +H2(z)H

∗
2 (z)

6= constant

2∑
i=0

|Fi(z)|2 = F0(z)F
∗
0 (z) + F1(z)F

∗
1 (z) + F2(z)F

∗
2 (z)

6= constant

Therefore, analysis and synthesis filters are not power complimentary.



(iv) Doubly complementary: Analysis and synthesis filters are neither power nor all-pass compli-
mentary. So they are not doubly complimentary.

(d) Filters are Nyquist-m if they can be expressed in the form Ai(z) = c+ z−1E(z2). As the filters
cannot be expressed in this form, they are not Nyquist-m.


