Homework #1 solutions

Prayag Linear and non-linear programming-1

February 1, 2018

Problem 2.1.

Solution. (a) Introducing slack and surplus variables, we get

minimize
$$x + 2y + z$$

subject to $x + y - \alpha = 2$
 $x + y + \beta = 3$
 $x + z - \gamma = 4$
 $x + z + \delta = 5$
 $\alpha, \beta, \gamma, \delta \ge 0$
 $x, y, z \ge 0.$

(b) Introducing slack and surplus variables, we get

minimize
$$\alpha + \beta + \gamma + 4$$

subject to $\alpha + 2\beta + 3\gamma = 2$
 $\alpha, \beta, \gamma \ge 0.$

Problem 2.2.

Solution. (a) From Figure 1a, we see that the cost is given by

$$Cost = (x_{1A} + 1.5x_{1B} + 2x_{2A} + 1.5x_{2B}) + (y_{Am_1} + 2y_{Am_2} + y_{Am_3} + 3y_{Bm_1} + 4y_{Bm_2} + 2y_{Bm_3})$$
(1)

Figure 1

minimize	Cost (Equation	1)
----------	----------------	----

subject to	$x_{1A} + x_{1B}$	= 10
	$x_{2A} + x_{2B}$	= 15
	$y_{Am_1} + y_{Bm_1}$	= 8
	$y_{Am_2} + y_{Bm_2}$	= 14
	$y_{Am_3} + y_{Bm_3}$	=3
	$x_{1A}, x_{1B}, x_{2A}, x_{2B}$	≥ 0
	$y_{Am_1}, y_{Am_2}, y_{Am_3}$	≥ 0
	$y_{Bm_1}, y_{Bm_2}, y_{Bm_3}$	$\geq 0.$

(b) From Figure 1b, we see that the cost is given by

$$Cost = \left(5x_{11}^{(1)} + 3.5x_{11}^{(2)} + 3x_{12}^{(1)} + 5.5x_{12}^{(2)} + 2x_{13}^{(1)} + 3.5x_{13}^{(2)}\right) + \left(6x_{21}^{(1)} + 4.5x_{21}^{(2)} + 3x_{22}^{(1)} + 3.5x_{22}^{(2)} + 2x_{23}^{(1)} + 3.5x_{23}^{(2)}\right)$$
(2)

minimize Cost (Equation 2)

subject to
$$\sum_{i=1}^{2} x_{1k}^{(i)} + x_{2k}^{(i)} = \alpha_k \ \forall k = 1, 2, 3$$
$$\sum_{k=1}^{3} x_{1k}^{(1)} + x_{1k}^{(2)} = 10$$
$$\sum_{k=1}^{3} x_{2k}^{(1)} + x_{2k}^{(2)} = 15$$
$$x_{1k}^{(1)}, x_{2k}^{(1)} \ge 0 \ \forall \ k = 1, 2, 3.$$

where

$$\alpha_k = \begin{cases} 8 & k = 1 \\ 14 & k = 2 \\ 3 & k = 3 \end{cases}$$

Problem 2.8.

Solution. Let us assume the following: $|x| \le t_1$, $|y| \le t_2$, $|z| \le t_3$ for some t_1, t_2 , and $t_3 \ge 0$. This results in the following inequalities.

$$x \le t_1 \tag{3}$$

$$x \ge -t_1 \tag{4}$$

$$y \le t_2 \tag{5}$$

$$y \ge -t_2 \tag{6}$$

$$z \le t_3 \tag{7}$$

$$z \ge -t_3 \tag{8}$$

Introducing slack and surplus variables we get

$$2x + z = 3 \tag{9}$$

$$x + y + \alpha_1 = 1 \tag{10}$$

$$x + \alpha_2 = t_1 \tag{11}$$

$$\begin{aligned} x - \alpha_3 &= -t_1 \tag{12} \\ y + \alpha_4 &= t_2 \tag{13} \end{aligned}$$

$$y + \alpha_4 = t_2 \tag{13}$$
$$y - \alpha_5 = -t_2 \tag{14}$$

$$y - \alpha_5 = -t_2 \tag{14}$$

$$z + \alpha_6 = t_3 \tag{15}$$

$$z - \alpha_7 = -t_3 \tag{16}$$

From equations (9)-(16), we get

$$2t_1 - \alpha_2 - \alpha_3 = 0 \tag{17}$$

$$2t_2 - \alpha_4 - \alpha_5 = 0 \tag{18}$$

$$2t_3 - \alpha_6 - \alpha_7 = 0 \tag{19}$$

$$t_1 + t_2 - \alpha_1 - \alpha_3 - \alpha_5 = -1 \tag{20}$$

$$2t_1 + t_3 - \alpha_1 - 2\alpha_3 = -3 \tag{21}$$

The standard form the problem is given by

minimize
$$t_1 + t_2 + t_3$$

subject to $t_1 + t_2 - \alpha_1 - \alpha_3 - \alpha_5 = -1$
 $2t_1 + t_3 - \alpha_1 - 2\alpha_3 = -3$
 $2t_1 - \alpha_2 - \alpha_3 = 0$
 $2t_2 - \alpha_4 - \alpha_5 = 0$
 $2t_3 - \alpha_6 - \alpha_7 = 0$
 $t_i, \alpha_j \ge 0 \ \forall \ i = 1, 2, 3 \ \text{and} \ j = 1, \dots, 7.$

Figure 2

Problem 2.12.

Solution. Let $S^{(1)} = \{a_1, \ldots, a_p\}$ and $L(S^{(1)}) = \text{span}\{a_1, \ldots, a_p\}$ denote the span of vectors as shown in Figure 2. Consider a vector $a_{p+1} \notin L(S^{(1)})$. Now, equating linear combination of $\{a_1, \ldots, a_{p+1}\}$ to zero we get

$$\alpha_1 a_1 + \dots + \alpha_p a_p + \alpha_{p+1} a_{p+1} = 0.$$
(22)

From equation (22) we see that $a_{p+1} = 0$ (because the set $S^{(1)}$ is a linearly independent set). Now, the set $S^{(2)} = \{a_1, \ldots, a_p, a_{p+1}\}$ forms a linearly independent set. Similarly consider another vector $a_{p+2} \notin L(S^{(2)})$ and we see that set $S^{(3)} = \{a_1, \ldots, a_{p+1}, a_{p+2}\}$ forms a linearly independent set. This can be repeated till we find m - p vectors.

Problem 2.3.

Figure 3

Solution. From the table we see that, 1 barrel of light crude produces 0.3 barrels of gasoline, 0.2 barrels of heating oil, and 0.3 barrels of jet fuel. Similarly, 1 barrel of heavy crude

produces 0.3 barrels of gasoline, 0.4 barrels of heating oil, and 0.2 barrels of jet fuel. Let x_l and x_h be the barrels of light crude and heavy crude respectively. Therefore, the cost is

$$C = 35x_l + 30x_h \tag{23}$$

The standard form of the problem is

minimize
$$C$$

subject to $0.3x_l + 0.3x_h = 900000$
 $0.2x_l + 0.4x_h = 800000$
 $0.3x_l + 0.2x_h = 500000$
 $x_l, x_h \ge 0.$

Problem 2.9.

Solution. Let $y = \text{maximum} (c_1^{\mathrm{T}} x + d_1, \dots, c_p^{\mathrm{T}} x + d_p)$. Then we have to minimize y subject to the following constraints:

minimize
$$y$$

subject to $c_i^{\mathrm{T}}x + d_i \leq y$
 $c_i, d_i \geq 0 \ \forall \ i = 1, \dots, p.$

Introducing slack variables we get

minimize
$$y$$

subject to $c_i^{\mathrm{T}}x + d_i + \alpha_i = y$
 $c_i, d_i, \alpha_i \ge 0 \ \forall \ i = 1, \dots, p.$