Homework \#1 solutions

Prayag
Linear and non-linear programming-1

February 1, 2018

Problem 2.1.

Solution. (a) Introducing slack and surplus variables, we get

$$
\begin{array}{lll}
\operatorname{minimize} & x+2 y+z & \\
\text { subject to } & x+y-\alpha=2 \\
& x+y+\beta=3 \\
& x+z-\gamma=4 \\
& x+z+\delta=5 \\
& \alpha, \beta, \gamma, \delta & \geq 0 \\
x, y, z & \geq 0 .
\end{array}
$$

(b) Introducing slack and surplus variables, we get

$$
\begin{array}{lll}
\operatorname{minimize} & \alpha+\beta+\gamma+4 & \\
\text { subject to } & \alpha+2 \beta+3 \gamma & =2 \\
& \alpha, \beta, \gamma & \geq 0
\end{array}
$$

Problem 2.2.
Solution. (a) From Figure 1a, we see that the cost is given by

$$
\begin{align*}
\text { Cost }= & \left(x_{1 A}+1.5 x_{1 B}+2 x_{2 A}+1.5 x_{2 B}\right) \\
& +\left(y_{A m_{1}}+2 y_{A m_{2}}+y_{A m_{3}}+3 y_{B m_{1}}+4 y_{B m_{2}}+2 y_{B m_{3}}\right) \tag{1}
\end{align*}
$$

Figure 1

\[

\]

(b) From Figure 1b, we see that the cost is given by

$$
\begin{align*}
\text { Cost }= & \left(5 x_{11}^{(1)}+3.5 x_{11}^{(2)}+3 x_{12}^{(1)}+5.5 x_{12}^{(2)}+2 x_{13}^{(1)}+3.5 x_{13}^{(2)}\right) \\
& +\left(6 x_{21}^{(1)}+4.5 x_{21}^{(2)}+3 x_{22}^{(1)}+3.5 x_{22}^{(2)}+2 x_{23}^{(1)}+3.5 x_{23}^{(2)}\right) \tag{2}
\end{align*}
$$

minimize Cost (Equation 2)

$$
\begin{array}{ll}
\text { subject to } & \sum_{i=1}^{2} x_{1 k}^{(i)}+x_{2 k}^{(i)}=\alpha_{k} \forall k=1,2,3 \\
& \sum_{k=1}^{3} x_{1 k}^{(1)}+x_{1 k}^{(2)}=10 \\
& \sum_{k=1}^{3} x_{2 k}^{(1)}+x_{2 k}^{(2)}=15 \\
& x_{1 k}^{(1)}, x_{2 k}^{(1)} \geq 0 \forall k=1,2,3 .
\end{array}
$$

where

$$
\alpha_{k}= \begin{cases}8 & k=1 \\ 14 & k=2 \\ 3 & k=3\end{cases}
$$

Problem 2.8.

Solution. Let us assume the following: $|x| \leq t_{1},|y| \leq t_{2},|z| \leq t_{3}$ for some t_{1}, t_{2}, and $t_{3} \geq 0$. This results in the following inequalities.

$$
\begin{align*}
& x \leq t_{1} \tag{3}\\
& x \geq-t_{1} \tag{4}\\
& y \leq t_{2} \tag{5}\\
& y \geq-t_{2} \tag{6}\\
& z \leq t_{3} \tag{7}\\
& z \geq-t_{3} \tag{8}
\end{align*}
$$

Introducing slack and surplus variables we get

$$
\begin{align*}
2 x+z & =3 \tag{9}\\
x+y+\alpha_{1} & =1 \tag{10}\\
x+\alpha_{2} & =t_{1} \tag{11}\\
x-\alpha_{3} & =-t_{1} \tag{12}\\
y+\alpha_{4} & =t_{2} \tag{13}\\
y-\alpha_{5} & =-t_{2} \tag{14}\\
z+\alpha_{6} & =t_{3} \tag{15}\\
z-\alpha_{7} & =-t_{3} \tag{16}
\end{align*}
$$

From equations (9)-(16), we get

$$
\begin{align*}
2 t_{1}-\alpha_{2}-\alpha_{3} & =0 \tag{17}\\
2 t_{2}-\alpha_{4}-\alpha_{5} & =0 \tag{18}\\
2 t_{3}-\alpha_{6}-\alpha_{7} & =0 \tag{19}\\
t_{1}+t_{2}-\alpha_{1}-\alpha_{3}-\alpha_{5} & =-1 \tag{20}\\
2 t_{1}+t_{3}-\alpha_{1}-2 \alpha_{3} & =-3 \tag{21}
\end{align*}
$$

The standard form the problem is given by

$$
\begin{array}{ll}
\operatorname{minimize} & t_{1}+t_{2}+t_{3} \\
\text { subject to } & t_{1}+t_{2}-\alpha_{1}-\alpha_{3}-\alpha_{5}=-1 \\
& 2 t_{1}+t_{3}-\alpha_{1}-2 \alpha_{3}=-3 \\
& 2 t_{1}-\alpha_{2}-\alpha_{3}=0 \\
& 2 t_{2}-\alpha_{4}-\alpha_{5}=0 \\
& 2 t_{3}-\alpha_{6}-\alpha_{7}=0 \\
& t_{i}, \alpha_{j} \geq 0 \forall i=1,2,3 \text { and } j=1, \ldots, 7 .
\end{array}
$$

Figure 2

Problem 2.12.
Solution. Let $S^{(1)}=\left\{a_{1}, \ldots, a_{p}\right\}$ and $L\left(S^{(1)}\right)=\operatorname{span}\left\{a_{1}, \ldots, a_{p}\right\}$ denote the span of vectors as shown in Figure 2. Consider a vector $a_{p+1} \notin L\left(S^{(1)}\right)$. Now, equating linear combination of $\left\{a_{1}, \ldots, a_{p+1}\right\}$ to zero we get

$$
\begin{equation*}
\alpha_{1} a_{1}+\cdots+\alpha_{p} a_{p}+\alpha_{p+1} a_{p+1}=0 . \tag{22}
\end{equation*}
$$

From equation (22) we see that $a_{p+1}=0$ (because the set $S^{(1)}$ is a linearly independent set). Now, the set $S^{(2)}=\left\{a_{1}, \ldots, a_{p}, a_{p+1}\right\}$ forms a linearly independent set. Similarly consider another vector $a_{p+2} \notin L\left(S^{(2)}\right)$ and we see that set $S^{(3)}=\left\{a_{1}, \ldots, a_{p+1}, a_{p+2}\right\}$ forms a linearly independent set. This can be repeated till we find $m-p$ vectors.

Problem 2.3.

Figure 3
Solution. From the table we see that, 1 barrel of light crude produces 0.3 barrels of gasoline, 0.2 barrels of heating oil, and 0.3 barrels of jet fuel. Similarly, 1 barrel of heavy crude
produces 0.3 barrels of gasoline, 0.4 barrels of heating oil, and 0.2 barrels of jet fuel. Let x_{l} and x_{h} be the barrels of light crude and heavy crude respectively. Therefore, the cost is

$$
\begin{equation*}
C=35 x_{l}+30 x_{h} \tag{23}
\end{equation*}
$$

The standard form of the problem is

$$
\begin{array}{ll}
\operatorname{minimize} & C \\
\text { subject to } & 0.3 x_{l}+0.3 x_{h}=900000 \\
& 0.2 x_{l}+0.4 x_{h}=800000 \\
& 0.3 x_{l}+0.2 x_{h}=500000 \\
& x_{l}, x_{h} \geq 0
\end{array}
$$

Problem 2.9.
Solution. Let $y=$ maximum $\left(c_{1}^{\mathrm{T}} x+d_{1}, \ldots, c_{p}^{\mathrm{T}} x+d_{p}\right)$. Then we have to minimize y subject to the following constraints:

$$
\begin{array}{ll}
\operatorname{minimize} & y \\
\text { subject to } & c_{i}^{\mathrm{T}} x+d_{i} \leq y \\
& c_{i}, d_{i} \geq 0 \forall i=1, \ldots, p
\end{array}
$$

Introducing slack variables we get

$$
\begin{array}{ll}
\operatorname{minimize} & y \\
\text { subject to } & c_{i}^{\mathrm{T}} x+d_{i}+\alpha_{i}=y \\
& c_{i}, d_{i}, \alpha_{i} \geq 0 \forall i=1, \ldots, p .
\end{array}
$$

