Indian Institute of Science

E9-207: Basic of Signal Processing

Instructor: Shayan G. Srinivasa Homework #2, Spring 2018

Late submission policy: Points scored = Correct points scored $\times e^{-d}$, d = # days late Due date: Mar. 1st 2017 in class Assigned date: Feb. 20th 2018

PROBLEM 1:

(a) Let S_1 and S_2 be two vector spaces. Then show that $S_1 \cap S_2$ is also a vector space. (3 pts)

(b) If $A \in \mathbb{C}^{n \times n}$ and $u, v \in \mathbb{C}^n$ are non-zero vectors such that Au = 2u and Av = 3v, show that u, v are linearly independent. (5 pts)

PROBLEM 2:

(a) Let $A \in \mathbb{C}^{m \times m}$ be a matrix acting on vectors in the vector space \mathbb{C}^m . We define a new product between vectors $x, y \in \mathbb{C}^m$ as $\langle x, y \rangle_A$ as $x^{\dagger}Ay$. Under what conditions on A is this a valid inner product? (5 pts)

$$A = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}$$

For what values of $a \in \mathbb{C}$ is $\sqrt{x^{\dagger}Ax}$ a norm defined on \mathbb{C}^3 ? (5 pts) Note: a^{\dagger} is the transpose conjugate of a. For example

$$v = \begin{pmatrix} 1 \\ i \\ -i \end{pmatrix} \Rightarrow v^{\dagger} = \begin{pmatrix} 1 & -i & i \end{pmatrix}$$

PROBLEM 3:

What is the minimum value of x - y - z subject to the constraint $x^2 + y^2 + z^2 = 1$? (4 pts)

Consider the functions $\varphi_k(t) = A\operatorname{sinc}(\pi(t-k))$ where k is an integer and $A \in \mathbb{C}$. For integers k, l evaluate

$$\int_{R} \varphi_k(t) \varphi_l^*(t) dt$$

Conclude that $\varphi(t) \in L^2(\mathbb{R})$ and that $\{\varphi_k : k \in \mathbb{Z}\}$ forms an orthonormal set of functions in $L^2(\mathbb{R})$. (8 pts) PROBLEM 5:

(a) A baseband signal s(t) with 50 Hz bandwidth is sampled at a rate F_s . The resultant signal is downsampled by a factor 2 to obtain the discrete samples $\hat{s}(n)$. What is the minimum value of F_s in Hz to reconstruct back the signal s(t) from the samples $\hat{s}(n)$? (4 pts)

(b) Let s(n) be any discrete time signal with energy E_s . The signal is downsampled by 3. What is the evergy of the resultant signal if there is no aliasing after decimation? (4 pts)

PROBLEM 6:

(a) A signal x(t) is obtained by convolving signals $x_1(t)$ and $x_2(t)$ with the following characteristics:

$$|X_1(\omega)| = 0 \text{ for } |\omega| > 500\pi,$$

 $|X_2(\omega)| = 0 \text{ for } |\omega| > 250\pi.$

Impulse train sampling is performed on x(t) to get $x_s(t) = \sum_{-\infty}^{\infty} x(nT)\delta(t-nT)$. Specify the range of values

of T so that x(t) may be recovered from $x_s(t)$. (4 pts)

(b) The signal $s(t) = \begin{cases} 1 - |t| \text{ for } -1 \le t \le 1 \\ 0 \text{ otherwise.} \end{cases}$ is passed through a system to obtain the output $\hat{s}(t)$. The system has a resonant frequency of $\frac{2}{3}$ Hz and hence allows only frequencies of $\frac{2}{3}$ Hz and its harmonics along

with d.c. component. What is the value of $\int_{-2}^{2} |\hat{s}(t)|^2$? (8 pts)