Indian Institute of Science

E9-252: Mathematical Methods and Techniques in Signal Processing

Instructor: Shayan Srinivasa Garani Mid Term Exam#2, Fall 2017

Name and SR.No:

Instructions:

- You are allowed only 5 pages of written notes and a calculator for this exam. No wireless allowed.
- The time duration is 3 hrs.
- There are five main questions. None of them have negative marking.
- Attempt all of them with careful reasoning and justification for partial credit.
- Do not panic, do not cheat.
- Good luck!

Question No.	Points scored
1	
2	
3	
4	
5	
Total points	

PROBLEM 1: An analog signal s(t) has a spectrum as shown in Figure 1. The maximum frequency in the signal as per the spectrum is ω_{\max} Hz. According to the sampling theorem, we must be able to reconstruct the signal by sampling at a rate $f_s > 2\omega_{\max}$ followed by an anti-aliasing filter. Is it possible to sample at less than the Nyquist rate and reconstruct the signal? Discuss the situation carefully. (15 pts.) Hint: You do not need any compressive sampling or other recent sampling ideas except what has been discussed in the class.

FIGURE 1. Spectrum of an analog signal.

PROBLEM 2: A student was performing measurements on a frequency reporting device. In an experimental report, the student mentioned that, while experimenting with pure sine waves, to account for frequency deviations of the device, he averaged the signal over a 0.5 ms time interval. He claimed that the device was producing frequencies accurately up to 0.1 KHz. Are the conclusions correct? Justify. (10 pts.)

PROBLEM 3: Let \mathcal{V}_p denote the space comprised of all functions $s(t) \in L^2(R)$ such that the support of s(t) is over $[-2^{-p},2^{-p}]$. Examine if $\{\mathcal{V}_p\}_{p\in\mathcal{Z}}$ is a multiresolution analysis. You need to examine all the properties.

PROBLEM 4: Expand the signal $s(t)=t^2$ over the interval [-1,1] using Haar wavelets up to a resolution of 0.25. Sketch the wavelet expansion. What is the approximation error? (20 pts.)

PROBLEM 5: You are given a digital low pass FIR filter H(z) of order N and no other filter. You are also given a sampled speech signal x[n] from an analog signal of duration 2 minutes sampled at 16KHz using a 12 bit ADC. You are required to realize a speech compression engine.

- (1) What is the original bit rate and the signal length in bits? (5 pts.)
- (2) Suppose we decide to have *J* stages over dyadic subband coding as shown in Figure 2(A). Show the equivalent analysis bank of filters i.e., just an equivalent filter and a downsampler on each branch as in Figure 2(B). What is the bit rate without any compression at each branch? You can assume that linear convolution is done. (7 pts.)
- (3) Suppose we need a target compression rate of 1:R, propose a scheme as to how you would reduce the bit rate using just quantizers. You may use a uniform or non-uniform quantizer as appropriate. Justify your choice. (10 pts.)
- (4) Sketch the synthesis stage, and show all the equivalent synthesis filters in each branch along with the necessary expanders similar to sub-part (2) above. (8 pts.)

Figure 2(B): Equivalent representation of Figure 2(A).

FIGURE 2. Subband coding of speech.