Indian Institute of Science

CCE: Neural Networks for Signal Processing-1

Instructor: Shayan Srinivasa Garani TA: Prayag Gowgi Home Work #4, Spring 2017

Late submission policy: Points scored = Correct points scored $\times e^{-d}$, d = # days late

Assigned date: April 13th 2017 **Due date:** April 21st 2017 in class

PROBLEM 1: Consider the case of a hyperplane for linearly separable patterns, which is defined by the equation

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$

where w denotes the weight vector, b denotes the bias, and x denotes the input vector. The hyperplane is said to correspond to a canonical pair (\mathbf{w}, b) if, for the set of input patterns $\{\mathbf{x}_i\}_{i=1}^N$, the additional requirement

$$\min_{i=1,\dots,N} |\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + b| = 1$$

is satisfied. Show that this requirment leads to a margin of separation between the two classes equal to $\frac{2}{\|\mathbf{w}\|}$ (20 pts.)

PROBLEM 2: The Mercer kernel $k(x_i, \mathbf{x}_j)$ is evaluated over a training sample \mathcal{T} of size N, yielding the $N \times N$ matrix

$$\mathbf{K} = \{k_{ij}\}_{i,j=1}^{N}$$

where $k_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$. Assume that the matrix \mathbf{K} is positive in that all of its elements have positive values. Using the similarity transformation

$$\mathbf{K} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathrm{T}}$$

where Λ is a diagonal matrix made up of eigenvalues and \mathbf{Q} is a matrix made up of the corresponding eigenvectors, formulate an expression for the Mercer kernel $k(\mathbf{x}_i, \mathbf{x}_j)$ in terms of the eigenvalues and eigenvectors of matrix \mathbf{K} . What conclusions can you draw from the representation?

(20 pts.)

PROBLEM 3:

(a) Demonstrate that all three Mercer kernels described below

$$k(\mathbf{x}, \mathbf{x_j}) = (\mathbf{x}^T \mathbf{x}_i + 1)^p$$

$$k(\mathbf{x}, \mathbf{x_j}) = \exp\left(-\frac{1}{2\sigma^2}||\mathbf{x} - \mathbf{x}_i||^2\right)$$

$$k(\mathbf{x}, \mathbf{x_j}) = \tanh\left(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1\right)$$

satisfy the unitary invariance property:

$$k(\mathbf{x}, \mathbf{x}_i) = k(\mathbf{Q}\mathbf{x}, \mathbf{Q}\mathbf{x}_i)$$

where Q is a unitary matrix defined by

$$\mathbf{Q}^{-1} = \mathbf{Q}^{\mathrm{T}}$$

(b) Does this property hold in general?

FIGURE 1. XOR operation

(10 pts.)

PROBLEM 4: Figure 1 shows the XOR function operating on a three dimensional pattern \mathbf{x} described by the relationship

$$XOR(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$$

where \oplus denotes the XOR operation. Design a polynomial learning machine to separate the two classes. (20 pts.)

PROBLEM 5: This experiment investigates the scenario where the two moons in Figure (please refer to Figure 1.8 in Simon Haykin textbook 3rd edition, page number 61) overlap and are therefore nonseparable.

- (a) Repeat the second part of the experiment in Figure 6.7 (refer to page number 290), for which the vertical separation between the two moons was fixed at d=-6.5. Experimentally, determine the value of parameter C for which the classification error rate is reduced to a minimum.
- (b) Reduce the vertical separation between the two moons further by setting d=-6.75, for which the classification error rate is expected to be higher than that for d=-6.5. Experimentally, determine the value of parameter C for which the error rate is reduced to minimum. Comment on the results obtained for both parts of the experiment.

(20 pts.)

PROBLEM 6: Consider the extended XOR problem (refer to problem 3, Figure 1 in HW2). Implement SVM for the extended XOR problem to classify the two classes. (30 pts.)

Note: The problems 1-5 are from Simon Haykin textbook 3rd edition.