Indian Institute of Science

E9-252: Mathematical Methods and Techniques in Signal Processing

Instructor: Shayan G. Srinivasa

Homework #2 Solutions, Fall 2017

Solutions prepared by Priya J Nadkarni

Late submission policy: Points scored = Correct points scored $\times e^{-d}$, d = # days late **Assigned date**: Sept. 4th 2017 **Due date**: Sept. 11th 2017 by end of the day

PROBLEM 1:

If $x(t) = \sum_{k=1}^{M} A_k e^{j2\pi f_k t}$, $E[A_k] = 0$ and A_k 's are uncorrelated, examine if x(t) is WSS.

Solution: For a process to be WSS, we need to check two conditions:

1) E[x(t)] should be a constant with respect to time t. Let us check it for our signal.

$$E[x(t)] = \sum_{k=1}^{M} E[A_k e^{j2\pi f_k t}] = \sum_{k=1}^{M} E[A_k] E[e^{j2\pi f_k t}] = 0$$

2) $R_{xx}(t_1, t_2)$ depends on only the time difference $t_1 - t_2$.

$$R_{xx}(t_1, t_2) = \mathbf{E}[x(t_1)x^*(t_2)] = \mathbf{E}\left[\sum_{k=1}^{M} A_k e^{j2\pi f_k t_1} \sum_{l=1}^{M} A_l^* e^{-j2\pi f_l t_2}\right]$$
$$= \sum_{k=1}^{M} \sum_{l=1}^{M} \mathbf{E}[A_k A_l^*] \mathbf{E}[e^{j2\pi (f_k t_1 - f_l t_2)}]$$

As A_k 's are uncorrelated, if $k \neq l$, $E[A_k A_l^*] = E[A_k] E[A_l^*] = E[A_k] E[A_l]^* = 0$. Thus,

$$R_{xx}(t_1, t_2) = \sum_{k=1}^{M} \mathrm{E}[|A_k|^2] \mathrm{E}[e^{j2\pi(f_k t_1 - f_k t_2)}] = \sum_{k=1}^{M} \mathrm{E}[|A_k|^2] \mathrm{E}[e^{j2\pi f_k (t_1 - t_2)}]$$

Thus, this process is WSS.

PROBLEM 2:

Prove the following:

a)
$$|R_{XX}(\tau)| < R_{XX}(0)$$

b)
$$|R_{XY}(\tau)| \le \sqrt{R_{XX}(0)R_{YY}(0)}$$

c)
$$R_{XX}(\tau) = R_{XX}^*(-\tau)$$

d)
$$\sum_{k=1}^{N} \sum_{l=1}^{N} a_k a_l^* R_{XX}(t_k - t_l) \ge 0 \quad \forall N > 0, \ \forall t_1 < t_2 < \dots < t_N \text{ and complex } a_i$$
's

Solution: Let us solve part b) first.

$$E[|x(t) - \alpha y(t - \tau)|^{2}] \geq 0$$

$$E[|x(t)|^{2}] + |\alpha|^{2}|y(t - \tau)|^{2} - \alpha^{*}x(t)y^{*}(t - \tau) - \alpha x^{*}(t)y(t - \tau)] \geq 0$$

$$R_{xx}(0) + |\alpha|^{2}R_{yy}(0) - \alpha^{*}R_{xy}(\tau) - \alpha R_{xy}^{*}(\tau) \geq 0$$
differentiating w.r.t α^{*} , $\alpha R_{yy}(0) - R_{xy}(\tau) = 0 \Rightarrow \alpha = \frac{R_{xy}(\tau)}{R_{yy}(0)}$
Thus, $R_{xx}(0) + |\frac{R_{xy}(\tau)}{R_{yy}(0)}|^{2}R_{yy}(0) - \frac{R_{xy}(\tau)}{R_{yy}(0)}R_{xy}^{*}(\tau) - \frac{R_{xy}^{*}(\tau)}{R_{yy}^{*}(0)}R_{xy}(\tau) \geq 0$

$$R_{xx}(0)R_{yy}(0) \geq |R_{xy}(\tau)|^{2}$$

$$|R_{xy}(\tau)| \leq \sqrt{R_{xx}(0)R_{yy}(0)}$$

a) This result is obtained by substituting y = x in part b)

c)

$$R_{xx}^*(-\tau) = E[x(t)x^*(t-\tau)]^* = E[x^*(t)x(t-\tau)]$$

= $E[x(t)x^*(t-\tau)] = R_{xx}(\tau)$

d) Let x(t) denote a WSS process. Consider $y(t) = \sum_{k=1}^{N} a_k x(t_k - t)$.

$$E[|y(t)|^{2}] \ge 0 \Rightarrow E[\sum_{k=1}^{N} a_{k} x(t_{k} - t) \sum_{l=1}^{N} a_{l}^{*} x^{*}(t_{l} - t)] \ge 0$$

$$\sum_{k=1}^{N} \sum_{l=1}^{N} a_{k} a_{l}^{*} E[x(t_{k} - t) x^{*}(t_{l} - t)] \ge 0$$

$$\sum_{k=1}^{N} \sum_{l=1}^{N} a_{k} a_{l}^{*} R_{xx}(t_{k} - t_{l}) \ge 0$$

PROBLEM 3:

a) Only one of the switches S_1 , S_2 and S_3 is active at a time. S_1 closes twice as fast as S_2 . S_2 closes twice as fast as S_3 . The signals are distributed normally as follows:

$$A \sim \mathcal{N}(-1,4), B \sim \mathcal{N}(0,1)$$
 and $C \sim \mathcal{N}(1,4)$

Figure 1: Switch

i) What is $P(X \le 1)$?

- ii) Given X > -1, which signal is most likely transmitted?
- b) There are two roads from A to B and two roads from B to C. Each of the four roads have probability p of being blocked by snow independently of all the others. What is the probability of an open road from A to C?

Solution:

a)
$$P(X \le 1) = \sum_{i=1}^{3} P(X \le 1 | S_i \text{ is active}) P(S_i \text{ is active}).$$

$$P(X \le 1 | S_i \text{ is active}) = \begin{cases} P(A \le 1) & i = 1\\ P(B \le 1) & i = 2\\ P(C \le 1) & i = 3 \end{cases}$$
 (1)

Computing the CDF for a variable M having normal distribution $\mathcal{N}(\mu, \sigma^2)$:

$$P(M \le b) = \int_{-\infty}^{b} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(m-\mu)^2}{2\sigma^2}} dm$$

Considering $y = \frac{m-\mu}{\sigma}$, we obtain $dy = \frac{dm}{\sigma}$ and limits change to $-\infty$ and $b' = \frac{b-\mu}{\sigma}$

$$P(M \le b) = \int_{-\infty}^{b'} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy = P(Y \le b' = \frac{b-\mu}{\sigma}) \text{ where } Y = \frac{M-\mu}{\sigma}$$

Thus, let Y be a random variable having standard normal distribution $\mathcal{N}(\mu, \sigma^2)$.

$$P(A \le 1) = P(Y \le (1 - (-1))/2) = P(X \le 1) = 0.8413$$

 $P(B \le 1) = P(Y \le (1 - 0)/1) = P(X \le 1) = 0.8413$
 $P(C \le 1) = P(Y \le (1 - (1))/2) = P(X \le 0) = 0.5$

Similarly, for (ii),

$$P(A \le -1) = P(Y \le (-1 - (-1))/2) = P(X \le 0) = 0.5 \Rightarrow P(A > -1) = 0.5$$

$$P(B \le -1) = P(Y \le (-1 - 0)/1) = P(X \le -1) = 0.1587 \Rightarrow P(B > -1) = 0.8413$$

$$P(C \le -1) = P(Y \le (-1 - (1))/2) = P(X \le -1) = 0.1587 \Rightarrow P(C > -1) = 0.8413$$

The CDF for standard normal distribution is obtained from the table.

Now, $P(S_1 \text{ is active}) : P(S_2 \text{ is active}) : P(S_3 \text{ is active}) = 4 : 2 : 1$

 $\Rightarrow P(S_1 \text{ is active}) = 4/7, P(S_2 \text{ is active}) = 2/7 \text{ and } P(S_3 \text{ is active}) = 1/7.$

$$\begin{array}{lcl} P(X \leq 1) &=& (4/7) \times 0.8413 + (2/7) \times 0.8413 + (1/7) \times 0.5 = 0.7925 \\ P(X \leq -1) &=& (4/7) \times 0.5 + (2/7) \times 0.1587 + (1/7) \times 0.1587 = 0.3537 \Rightarrow P(X > -1) = 0.6463 \end{array}$$

When X > -1, the signal which was most likely to be transmitted is computed based on aposteriori probability,

$$P(X = A|X > -1) = \frac{P(X > -1|X = A)P(X = A)}{P(X > -1)} = \frac{0.5 \times \frac{4}{7}}{0.6463} = 0.4421$$

$$P(X = B|X > -1) = \frac{P(X > -1|X = B)P(X = B)}{P(X > -1)} = \frac{0.8413 \times \frac{2}{7}}{0.6463} = 0.3719$$

$$P(X = C|X > -1) = \frac{P(X > -1|X = C)P(X = C)}{P(X > -1)} = \frac{0.8413 \times \frac{1}{7}}{0.6463} = 0.1859$$

Thus, the most likely transmitted signal is A.

b) Let r_1 and r_2 be roads from A to B and r_3 and r_4 be roads from B to C. The probability that a road is not blocked is 1 - p. Thus,

P(Road open from A to C) = P(Road open from A to B)P(Road open from B to C)

P(Road open from A to B) = P(Road open from A to B) due to symmetry

 $P(\text{Road open from A to B}) = P(r_1 \text{ or } r_1 \text{ is open})$

$$= p(1-p) + (1-p)p + (1-p)^2 = 1 - p^2$$

P(Road open from A to C) = $(1-p^2)^2$

PROBLEM 4: Prove the Cauchy Schwarz inequality for random variables: For two random variables X and Y,

$$|\operatorname{Cov}(X,Y)| \le \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}.$$

Solution: Let X and Y be two random variables. Let us convert them to random variables A and B which have zero mean and variance equal to 1.

$$A = \frac{X - \mathrm{E}[X]}{\sigma_X}, \ B = \frac{Y - \mathrm{E}[Y]}{\sigma_Y}$$

Now, as $E[(A+B)^2] \ge 0$ and $E[(A-B)^2] \ge 0$, we have,

$$\begin{split} \mathrm{E}[A^2 + B^2 + 2AB] & \geq & 0 \Rightarrow \mathrm{E}[A^2] + \mathrm{E}[B^2] + 2\mathrm{E}[AB] \geq 0 \\ \mathrm{E}[AB] & \geq & (-\sigma_A - \sigma_B)/2 = -1 \\ \mathrm{E}[A^2 + B^2 - 2AB] & \geq & 0 \Rightarrow \mathrm{E}[A^2] + \mathrm{E}[B^2] - 2\mathrm{E}[AB] \geq 0 \\ \mathrm{E}[AB] & \leq & (\sigma_A + \sigma_B)/2 = 1 \\ \Rightarrow |\mathrm{E}[AB]| \leq 1 \end{split}$$

Equality occurs when $E[(A+B)^2] = 0$ or $E[(A-B)^2] = 0$, i.e. when A = -B or A = B. Considering X and Y,

$$|\operatorname{Cov}(X,Y)| = |E[(X - E[X])(Y - E[Y])]| = |E[\sigma_X A \sigma_Y B]|$$

$$= |\sigma_X \sigma_Y E[AB]| = |\sigma_X \sigma_Y||E[AB]|$$

$$\leq \sqrt{\sigma_X^2 \sigma_Y^2}$$

$$= \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}$$