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Problem 14.2.3
Using block matrix representation, we can write

Az+b=[A 1] m

=1

Part a:

We want -

Stacking the equations horizontally, we have

oy o] [0]
L A o Z _ 1 1 1
D I R 8 B P
T S to] X[l]
ie.,
X0 = x [, (2)

Since the vertices are from R?, the matrices T', X O and XM are of dimensions 2 x 3,3x (k+1)and
2 x (k + 1) respectively.

A and b can be obtained from (2) by inverting the matrix X °

T=[A b =x (X[O]>_1.

For this we need k + 1 = 3 and the matrix X© must be non-singular.

Therefore, k + 1 = 3 vertices are necessary to uniquely define the affine transformation.

Part b:

If fewer vertices are available, then (1) is an under-determined set of equations. Therefore, there
would be more than one affine transformation that achieves the desired mapping of vertices.

If more vertices are available, then (1) is an over-determined set of equations. In this case, A and
b can be obtained using first 3 vertices gg)], g[lo] and g[zo]. If the remaining set of points g:[gl], . QE]
can be obtained using the affine transformation Axz + b, then a solution exists. If the remaining set

of points gg], e gg] cannot be obtained using the affine transformation Az + b, then no valid affine

transformation exists. In this case, a psuedo-inverse of X ] can be used to obtain a least-squared
solution.
Part c:



When 3 vertices are available, the unique transformation can be obtained as

T=[A b =x (X[O]>_1.

Part d:
We have
1 2 2
x0 = |1 1 2. XMZF.Q 1.7 1.5};
111 1 12 1.7

Therefore, the transformation is

[A b =X (Xm)*l _ {0.5 —0.2 0.9]

02 05 03
0.5 —0.2 0.9
= A= [0.2 0.5 } P b= [0.3} ’

Following figure shows the polygon before and after the affine transformation.
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Part e:
Following figure shows the ploygon after multiple iterations of the affine transformation on the
given polygon.
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Problem 14.2.4

‘We have
1 app -+ a,
a1 1 -+ aoy,
A= .
an1 an2 1

Since A is diagonally dominant, we have

1=lag| > Y laig| ¥i=1,2,-- ,n.

Jj#i
0 a2 ain
a1 0 -+ agy,
A-T= .
anl an2 0

Therefore, the max-norm of A — I is

JA -1, = max Y lasl <1 (From (3)).

J#i



Problem 14.2-5
‘We have
21— A L

Part a:
We will prove the following result using induction:

k—1
2kl = ZAijrAkl[O]

Jj=0

For k =1, (5) is same as
2 =p+ Azl

which is true from (5).
Assume that (5) is true for some k =n i.e.,

n—1
M = ZAijrA”g[O]
§=0
— 2l = Agl b (using (4))
n—1
=AY ab)+a (AHQ[O]) +b

Jj=0

n
:ZAJQ+A7L+1£[O]+AOQ
j=1

gt = 3" AT 4 At 0L
§=0

Therefore, by mathematical induction (5) is true for all k.

From (5),
(A—1T1)zH = AglFl — zIM
k—1 ] k—1 )
— A ZA’Q+Ak§[O] _ ZAJQ_’_Ak&[O]
j=0 7=0
k k—1
j=1 j=0
= AFp— b+ AP0 4RO
(A—I)zM = (Ak - I) bt (A—I) A"
— MW =a-1" (A"‘ - I) b+ (A—I)"" (A—I) A"l
nall = (A-D)7 (A1) bt At
Parts b, c:

Given ||Al|, = 1. Therefore the largest (in magnitude) eigen value of A” A has magnitude 1.



A— [cos® —sinf| [e A]  [ecos® Acos® —sinf
~ |sinf cosf | |0 1]  |esin® Asinf+cosf
o, |et 0][cosf sinf] [cosf —sind] e A
= ATA= [A* 1] [—sind cos@] [sin& cosf | |0 1
et 0]t 0][e Al
1o 1o 1
. fe* 0] [e A
T 1] fo 1
_[le®ea
T olext 14 AP
det (AHA - Ix) =0
le|* — x e*\
— det =
¢ [ ex* 1+ [\ -2

— (1 NP - 17) (|e\2 - a:) — P2 =0

= leP -zl —z—ANPz+2?>=0

= 2? -z (1 + AP+ |e|2) +lef>=0

2 2
A= (TP +1ef) = alel® = (1+ A7 = lef?) +4A% Jef* > 0

Therefore, the roots are real.

Given ||Al|, = 1 and since the roots are real, x = —1 or x = 1 must be a root of the characteristic
equation.

Substituting # = —1 gives 2 + |A|> + 2|e|* = 0 which is not possible. Therefore z = 1 is a root of

the above equation — 1 — (1 + AP+ |e|2) —le/* =0 = A =0. Using A = 0, the characteristic
equation becomes

x? — (1 + \e|2> z+le|* = 0.
Therefore, |e|? is the other eigen value of A A. Since |Al, =1, |e2} <1

__|ecosf —sinf

o {esiné? cos } ’

However, following plot shows that the orbit is a spiral (and not ellipse) for A = 0.

ecosf Acosf —sinf
A=0 = A= {esin@ ASiHG—&—COSG]

e=0.95 A=0.00, 6=m/20, b=[11]




This contradicts the claim in the problem statement that ||A||, = 1 results in an elliptical orbit.

Part d:

Following plots show the orbits for different values of e, A, 6 for b = z[0 =

€=0.00, =000, 6 =20

€=0.00, .=0.10, 6 =120

168 =000, 1=095, 6=7/20

168 =000, =100, 6=/20
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e=1.05, %=000, 6=w20 €=1.05, %=0.10, 0=w20 X 1= 1.05, 2.=085, 6= /20 X 1= 1.05, =100, 6 =7/20 X %= 1.05, =105, 6=7/20
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Observations:

1. The orbit becomes larger with an increase in .

2. e < 1: The orbit is a spiral that converges to a point.
3. e = 1: The orbit is an ellipse.

4. e > 1: The orbit is a spiral that diverges to infinity.

Remark: The orbit is an ellipse if e = 1. This is because both the eigen values of A are of unit
magnitude. This results in ’oscillatory’ behavior of A* as k increases.

For parts ¢ and d of the problem, we assume e = 1 instead of ||A|l, = 1 and obtain the center z,
and U for the general form of ellipse given by

(z—z0) Ulz—1zy) =c. (7)

For e = 1, we have

_ [cos@ —sin@} {1 /\} _ [COSG Acos —sinf
N 0 1

sinf  cosf " |sin® Asinf 4+ cosé|

‘We have
g[k] — Ai[kfl] +b

=z =AgF AT -A) b+ (T -A) T
Q[H _ (I— A)flb: A (g[k] _ (I_ A)flb)

— (g[k] (A Q)T U (g[k] (A Q) - (g[’HJ —(I—-A)! Q)T AU A (;UH] —(I-A)" @)



Setting AU A = U and comparing this to the equation of an ellipse, we have the center given by

2y = (I—A)"b

Transposing the equation (7), we can easily see that U = U7”. Also, the equation of the ellipse will
still have the same form even if we scale the matrix U. Therefore, we can set one of the elements of

U to 1. The matrix U = [i z] can be obtained by solving
U=A"TUA
. 1 u|l cosf sin 0 1 u cos sin 6
u v| |Acos@ —sin@ Asinf+cosf| v v| |Acosf —sinf Asinf + cos6

cos 6 sin 0 cos@ +uAcosf —usinf  sinf + uAsinf + wcosf
Acosf —sinf Asinf + cosf| |ucosf +vicosf —vsinh wusinb +vAsinf + vcosb

= 1= 00829+u(/\COS2(9) —l—v(/\cosﬁsine—sinze)
u=sinfcosf +u(l+ Asinfcosf) + v (Asin® 0 + sinf cos 0)
v = Asin@cos@—sin20—|—u(Azsinf)cosﬂ—i—/\cosQé)) +v()\2511129—|—2)\sint9(:ost9+(:0520)

Solving the above set of equations will result in

u = tan 6
v=—1.
1 tan 6 .
Therefore, U = [tan@ 1 ] . Scaling by cos 6, we have

sinf —cosf

_ [COSG sin }

The constant ¢ depends on the initial position z[%. Therefore the equation of the ellipse is

(27 (I*A)ilb)T |:C059 sin 6 ] (gf(IfA)flb) _ (2[0] B (IfA)flb)T {cosﬁ sin 6 } (g[o] _ (I*A)ilb).

sinf —cos6 sinf —cosf



