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Problem 14.2.3
Using block matrix representation, we can write

Ax+ b =
[
A b

] [x
1

]
Part a:
We want [

A b
] [x[0]i

1

]
= x

[1]
i , i = 0, 1, 2, · · · , k. (1)

Stacking the equations horizontally, we have

[
A b

]︸ ︷︷ ︸
T

[
x
[0]
0 x

[0]
1 · · · x

[0]
k

1 1 · · · 1

]
︸ ︷︷ ︸

X[0]

=
[
x
[1]
0 x

[1]
1 · · · x

[1]
k

]
︸ ︷︷ ︸

X[1]

i.e.,
TX [0] = X [1]. (2)

Since the vertices are from R2, the matrices T , X [0] and X [1] are of dimensions 2× 3, 3× (k + 1) and
2× (k + 1) respectively.

A and b can be obtained from (2) by inverting the matrix X [0]:

T =
[
A b

]
= X [1]

(
X [0]

)−1
.

For this we need k + 1 = 3 and the matrix X [0] must be non-singular.
Therefore, k + 1 = 3 vertices are necessary to uniquely define the affine transformation.
Part b:
If fewer vertices are available, then (1) is an under-determined set of equations. Therefore, there

would be more than one affine transformation that achieves the desired mapping of vertices.
If more vertices are available, then (1) is an over-determined set of equations. In this case, A and

b can be obtained using first 3 vertices x[0]0 , x[0]1 and x
[0]
2 . If the remaining set of points x[1]3 , · · ·x

[1]
k

can be obtained using the affine transformation Ax + b, then a solution exists. If the remaining set
of points x[1]3 , · · ·x

[1]
k cannot be obtained using the affine transformation Ax + b, then no valid affine

transformation exists. In this case, a psuedo-inverse of X [0] can be used to obtain a least-squared
solution.

Part c:

1



When 3 vertices are available, the unique transformation can be obtained as

T =
[
A b

]
= X [1]

(
X [0]

)−1
.

Part d:
We have

X [0] =

1 2 2
1 1 2
1 1 1

 ; X [1] =

[
1.2 1.7 1.5
1 1.2 1.7

]
;

Therefore, the transformation is

[
A b

]
= X [1]

(
X [0]

)−1
=

[
0.5 −0.2 0.9
0.2 0.5 0.3

]

=⇒ A =

[
0.5 −0.2
0.2 0.5

]
; b =

[
0.9
0.3

]
;

Following figure shows the polygon before and after the affine transformation.

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Y

 

 

Before transformation

After transformation

Part e:
Following figure shows the ploygon after multiple iterations of the affine transformation on the

given polygon.
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Problem 14.2.4
We have

A =


1 a12 · · · a1n
a21 1 · · · a2n
...

...
. . .

...
an1 an2 · · · 1

 .
Since A is diagonally dominant, we have

1 = |ai,i| >
∑
j 6=i

|ai,j | ∀i = 1, 2, · · · , n. (3)

A− I =


0 a12 · · · a1n
a21 0 · · · a2n
...

...
. . .

...
an1 an2 · · · 0

 .
Therefore, the max-norm of A− I is

‖A− I‖∞ = max
i

∑
j 6=i

|ai,j | < 1 (From (3)) .
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Problem 14.2-5
We have

x[k+1] = Ax[k] + b. (4)

Part a:
We will prove the following result using induction:

x[k] =

k−1∑
j=0

Ajb+ Akx[0] (5)

For k = 1, (5) is same as
x[1] = b+ Ax[0]

which is true from (5).
Assume that (5) is true for some k = n i.e.,

x[n] =

n−1∑
j=0

Ajb+ Anx[0]

=⇒ x[n+1] = Ax[n] + b (using (4))

= A

n−1∑
j=0

Ajb

+ A
(
Anx[0]

)
+ b

=

n∑
j=1

Ajb+ An+1x[0] + A0b

x[n+1] =

n∑
j=0

Ajb+ An+1x[0].

Therefore, by mathematical induction (5) is true for all k.
From (5),

(A− I)x[k] = Ax[k] − x[k]

= A

k−1∑
j=0

Ajb+ Akx[0]

−
k−1∑

j=0

Ajb+ Akx[0]


=

k∑
j=1

Ajb−
k−1∑
j=0

Ajb+ Ak+1x[0] −Akx[0]

= Akb− b+ Ak+1x[0] −Akx[0]

(A− I)x[k] =
(
Ak − I

)
b+ (A− I)Akx[0]

=⇒ x[k] = (A− I)
−1
(
Ak − I

)
b+ (A− I)

−1
(A− I)Akx[0]

∴ x[k] = (A− I)
−1
(
Ak − I

)
b+ Akx[0] (6)

Parts b, c:
Given ‖A‖2 = 1. Therefore the largest (in magnitude) eigen value of AHA has magnitude 1.
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A =

[
cos θ − sin θ
sin θ cos θ

] [
e λ
0 1

]
=

[
e cos θ λ cos θ − sin θ
e sin θ λ sin θ + cos θ

]
=⇒ AHA =

[
e∗ 0
λ∗ 1

] [
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

] [
e λ
0 1

]
=

[
e∗ 0
λ∗ 1

] [
1 0
0 1

] [
e λ
0 1

]
=

[
e∗ 0
λ∗ 1

] [
e λ
0 1

]
=

[
|e|2 e∗λ

eλ∗ 1 + |λ|2
]

det
(
AHA− Ix

)
= 0

=⇒ det

[
|e|2 − x e∗λ

eλ∗ 1 + |λ|2 − x

]
= 0

=⇒
(

1 + |λ|2 − x
)(
|e|2 − x

)
− |e|2 |λ|2 = 0

=⇒ |e|2 − x |e|2 − x− |λ|2 x+ x2 = 0

=⇒ x2 − x
(

1 + |λ|2 + |e|2
)

+ |e|2 = 0

∆ =
(

1 + |λ|2 + |e|2
)2
− 4 |e|2 =

(
1 + |λ|2 − |e|2

)2
+ 4 |λ|2 |e|2 > 0

Therefore, the roots are real.
Given ‖A‖2 = 1 and since the roots are real, x = −1 or x = 1 must be a root of the characteristic

equation.
Substituting x = −1 gives 2 + |λ|2 + 2 |e|2 = 0 which is not possible. Therefore x = 1 is a root of

the above equation =⇒ 1 −
(

1 + |λ|2 + |e|2
)
− |e|2 = 0 =⇒ λ = 0. Using λ = 0, the characteristic

equation becomes
x2 −

(
1 + |e|2

)
x+ |e|2 = 0.

Therefore, |e|2 is the other eigen value of AHA. Since ‖A‖2 = 1,
∣∣e2∣∣ ≤ 1.

λ=0 =⇒ A =

[
e cos θ λ cos θ − sin θ
e sin θ λ sin θ + cos θ

]
=

[
e cos θ − sin θ
e sin θ cos θ

]
.

However, following plot shows that the orbit is a spiral (and not ellipse) for λ = 0.
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This contradicts the claim in the problem statement that ‖A‖2 = 1 results in an elliptical orbit.
Part d:

Following plots show the orbits for different values of e, λ, θ for b = x[0] =

[
1
1

]
.

−20 0 20

10

20

30

40

50

e = 0.00,  λ = 0.00,  θ = π/20

−50 0 50

20

40

60

80

100

e = 0.00,  λ = 0.10,  θ = π/20

0 5 10 15 20

x 10
5

0.5

1

1.5

2

2.5

x 10
6e = 0.00,  λ = 0.95,  θ = π/20

0 1 2 3 4

x 10
6

1

2

3

4

x 10
6e = 0.00,  λ = 1.00,  θ = π/20

0 2 4 6 8

x 10
6

2

4

6

8

x 10
6e = 0.00,  λ = 1.05,  θ = π/20

−20 −10 0 10 20

10

20

30

40

50

e = 0.10,  λ = 0.00,  θ = π/20

−50 0 50

20

40

60

80

100

e = 0.10,  λ = 0.10,  θ = π/20

0 2 4

x 10
6

1

2

3

4

5

6

x 10
6e = 0.10,  λ = 0.95,  θ = π/20

0 5 10

x 10
6

2

4

6

8

10

12

x 10
6e = 0.10,  λ = 1.00,  θ = π/20

0 0.5 1 1.5 2

x 10
7

0.5

1

1.5

2

2.5

x 10
7e = 0.10,  λ = 1.05,  θ = π/20

−10 −5 0

2

4

6

8

10

12

14

e = 0.95,  λ = 0.00,  θ = π/20

−20 −10 0 10

5

10

15

20

25

30

35

e = 0.95,  λ = 0.10,  θ = π/20

2 4 6 8

x 10
14

−1

0

1

2

3

4

5

6

x 10
14e = 0.95,  λ = 0.95,  θ = π/20

0.5 1 1.5 2 2.5

x 10
15

−5

0

5

10

15

x 10
14e = 0.95,  λ = 1.00,  θ = π/20

2 4 6

x 10
15

−1

0

1

2

3

4

5

x 10
15e = 0.95,  λ = 1.05,  θ = π/20

−10 −5 0

0

5

10

15

e = 1.00,  λ = 0.00,  θ = π/20

−20 −10 0 10

0

5

10

15

20

25

30

35

e = 1.00,  λ = 0.10,  θ = π/20

1 2 3 4 5

x 10
15

−1

0

1

2

3

4

x 10
15e = 1.00,  λ = 0.95,  θ = π/20

0 5 10 15

x 10
15

−2

0

2

4

6

8

10

12

x 10
15e = 1.00,  λ = 1.00,  θ = π/20

0 1 2 3 4

x 10
16

−1

0

1

2

3

x 10
16e = 1.00,  λ = 1.05,  θ = π/20

6



−50 0 50

−40

−20

0

20

40

60

80

e = 1.05,  λ = 0.00,  θ = π/20

−100 −50 0 50 100

−50

0

50

100

150

e = 1.05,  λ = 0.10,  θ = π/20

0 1 2 3 4

x 10
16

−0.5

0

0.5

1

1.5

2

2.5

3

x 10
16e = 1.05,  λ = 0.95,  θ = π/20

0 5 10

x 10
16

−2

0

2

4

6

8

x 10
16e = 1.05,  λ = 1.00,  θ = π/20

0 1 2 3

x 10
17

−5

0

5

10

15

20

x 10
16e = 1.05,  λ = 1.05,  θ = π/20

−3 −2 −1 0 1

0

1

2

3

4

5

e = 1.00,  λ = 0.10,  θ = π/5

−8 −6 −4 −2 0 2

0

2

4

6

8

10

e = 1.00,  λ = 0.10,  θ = π/10

−20 −10 0 10

0

5

10

15

20

25

30

35

e = 1.00,  λ = 0.10,  θ = π/20

−200 −100 0 100 200
0

100

200

300

400

e = 1.00,  λ = 0.10,  θ = π/30

−5 0 5 10 15

x 10
18

0

0.5

1

1.5

2

x 10
19e = 1.00,  λ = 0.10,  θ = π/40

Observations:

1. The orbit becomes larger with an increase in λ.

2. e < 1: The orbit is a spiral that converges to a point.

3. e = 1: The orbit is an ellipse.

4. e > 1 : The orbit is a spiral that diverges to infinity.

Remark: The orbit is an ellipse if e = 1. This is because both the eigen values of A are of unit
magnitude. This results in ’oscillatory’ behavior of Ak as k increases.

For parts c and d of the problem, we assume e = 1 instead of ‖A‖2 = 1 and obtain the center x0
and U for the general form of ellipse given by

(x− x0)
T
U (x− x0) = c. (7)

For e = 1, we have

A =

[
cos θ − sin θ
sin θ cos θ

] [
1 λ
0 1

]
=

[
cos θ λ cos θ − sin θ
sin θ λ sin θ + cos θ

]
.

We have

x[k] = Ax[k−1] + b

=⇒ x[k] = Ax[k−1] −A (I −A)
−1
b+ (I −A)

−1
b

x[k] − (I −A)
−1
b = A

(
x[k] − (I −A)

−1
b
)

=⇒
(
x[k] − (I −A)

−1
b
)T

U
(
x[k] − (I −A)

−1
b
)

=
(
x[k−1] − (I −A)

−1
b
)T

AHUA
(
x[k−1] − (I −A)

−1
b
)

7



Setting AHUA = U and comparing this to the equation of an ellipse, we have the center given by

x0 = (I −A)
−1
b.

Transposing the equation (7), we can easily see that U = UT . Also, the equation of the ellipse will
still have the same form even if we scale the matrix U . Therefore, we can set one of the elements of

U to 1. The matrix U =

[
1 u
u v

]
can be obtained by solving

U = AHUA

=⇒
[

1 u
u v

]
=

[
cos θ sin θ

λ cos θ − sin θ λ sin θ + cos θ

] [
1 u
u v

] [
cos θ sin θ

λ cos θ − sin θ λ sin θ + cos θ

]
=

[
cos θ sin θ

λ cos θ − sin θ λ sin θ + cos θ

] [
cos θ + uλ cos θ − u sin θ sin θ + uλ sin θ + u cos θ
u cos θ + vλ cos θ − v sin θ u sin θ + vλ sin θ + v cos θ

]

=⇒ 1 = cos2 θ + u
(
λ cos2 θ

)
+ v

(
λ cos θ sin θ − sin2 θ

)
u = sin θ cos θ + u (1 + λ sin θ cos θ) + v

(
λ sin2 θ + sin θ cos θ

)
v = λ sin θ cos θ − sin2 θ + u

(
λ2 sin θ cos θ + λ cos2 θ

)
+ v

(
λ2 sin2 θ + 2λ sin θ cos θ + cos2 θ

)
Solving the above set of equations will result in

u = tan θ

v = −1.

Therefore, U =

[
1 tan θ

tan θ −1

]
. Scaling by cos θ, we have

U =

[
cos θ sin θ
sin θ − cos θ

]
.

The constant c depends on the initial position x[0]. Therefore the equation of the ellipse is(
x− (I −A)

−1
b
)T [cos θ sin θ

sin θ − cos θ

](
x− (I −A)

−1
b
)

=
(
x[0] − (I −A)

−1
b
)T [cos θ sin θ

sin θ − cos θ

](
x[0] − (I −A)

−1
b
)
.
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