E9-252: Mathematical Methods and Techniques in Signal Processing Homework 5 Solutions

Instructor: Shayan Garani Srinivasa
Solutions Prepared By: Chaitanya Kumar Matcha

5 December 2016

Problem 14.2.3

Using block matrix representation, we can write

$$
\boldsymbol{A} \underline{x}+\underline{b}=\left[\begin{array}{ll}
\boldsymbol{A} & \underline{b}
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
1
\end{array}\right]
$$

Part a:
We want

$$
\left[\begin{array}{ll}
\boldsymbol{A} & \underline{b}
\end{array}\right]\left[\begin{array}{c}
\underline{x}_{i}^{[0]} \tag{1}\\
1
\end{array}\right]=\underline{x}_{i}^{[1]}, \quad i=0,1,2, \cdots, k .
$$

Stacking the equations horizontally, we have

$$
\underbrace{\left[\begin{array}{ll}
\boldsymbol{A} & \underline{b}
\end{array}\right]}_{\boldsymbol{T}} \underbrace{\left.\begin{array}{cccc}
\underline{x}_{0}^{[0]} & \underline{x}_{1}^{[0]} & \cdots & \underline{x}_{k}^{[0]} \\
1 & 1 & \cdots & 1
\end{array}\right]}_{\boldsymbol{X}^{[0]}}=\underbrace{\left[\begin{array}{llll}
\underline{x}_{0}^{[1]} & \underline{x}_{1}^{[1]} & \cdots & \underline{x}_{k}^{[1]}
\end{array}\right]}_{\boldsymbol{X}^{[1]}}
$$

i.e.,

$$
\begin{equation*}
\boldsymbol{T} \boldsymbol{X}^{[0]}=\boldsymbol{X}^{[1]} \tag{2}
\end{equation*}
$$

Since the vertices are from \mathbb{R}^{2}, the matrices $\boldsymbol{T}, \boldsymbol{X}^{[0]}$ and $\boldsymbol{X}^{[1]}$ are of dimensions $2 \times 3,3 \times(k+1)$ and $2 \times(k+1)$ respectively.
\boldsymbol{A} and \underline{b} can be obtained from (2) by inverting the matrix $\boldsymbol{X}^{[0]}$:

$$
\boldsymbol{T}=\left[\begin{array}{ll}
\boldsymbol{A} & \underline{b}
\end{array}\right]=\boldsymbol{X}^{[1]}\left(\boldsymbol{X}^{[0]}\right)^{-1}
$$

For this we need $k+1=3$ and the matrix $\boldsymbol{X}^{[0]}$ must be non-singular.
Therefore, $k+1=3$ vertices are necessary to uniquely define the affine transformation.
Part b:
$\overline{\text { If fewer }}$ vertices are available, then (1) is an under-determined set of equations. Therefore, there would be more than one affine transformation that achieves the desired mapping of vertices.

If more vertices are available, then (1) is an over-determined set of equations. In this case, \boldsymbol{A} and \underline{b} can be obtained using first 3 vertices $\underline{x}_{0}^{[0]}, \underline{x}_{1}^{[0]}$ and $\underline{x}_{2}^{[0]}$. If the remaining set of points $\underline{x}_{3}^{[1]}, \cdots \underline{x}_{k}^{[1]}$ can be obtained using the affine transformation $\boldsymbol{A} \underline{x}+\underline{b}$, then a solution exists. If the remaining set of points $\underline{x}_{3}^{[1]}, \cdots \underline{x}_{k}^{[1]}$ cannot be obtained using the affine transformation $\boldsymbol{A} \underline{x}+\underline{b}$, then no valid affine transformation exists. In this case, a psuedo-inverse of $\boldsymbol{X}^{[0]}$ can be used to obtain a least-squared solution.

Part c:

When 3 vertices are available, the unique transformation can be obtained as

$$
\boldsymbol{T}=\left[\begin{array}{ll}
\boldsymbol{A} & \underline{b}
\end{array}\right]=\boldsymbol{X}^{[1]}\left(\boldsymbol{X}^{[0]}\right)^{-1}
$$

Part d:

We have

$$
\boldsymbol{X}^{[0]}=\left[\begin{array}{ccc}
1 & 2 & 2 \\
1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] ; \quad \boldsymbol{X}^{[1]}=\left[\begin{array}{ccc}
1.2 & 1.7 & 1.5 \\
1 & 1.2 & 1.7
\end{array}\right]
$$

Therefore, the transformation is

$$
\begin{gathered}
{\left[\begin{array}{ll}
\boldsymbol{A} & \underline{b}
\end{array}\right]=\boldsymbol{X}^{[1]}\left(\boldsymbol{X}^{[0]}\right)^{-1}=\left[\begin{array}{ccc}
0.5 & -0.2 & 0.9 \\
0.2 & 0.5 & 0.3
\end{array}\right]} \\
\quad \Longrightarrow \boldsymbol{A}=\left[\begin{array}{cc}
0.5 & -0.2 \\
0.2 & 0.5
\end{array}\right] ; \quad \underline{b}=\left[\begin{array}{c}
0.9 \\
0.3
\end{array}\right]
\end{gathered}
$$

Following figure shows the polygon before and after the affine transformation.

Part e:

Following figure shows the ploygon after multiple iterations of the affine transformation on the given polygon.

Problem 14.2.4
We have

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & a_{12} & \cdots & a_{1 n} \\
a_{21} & 1 & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & 1
\end{array}\right]
$$

Since \boldsymbol{A} is diagonally dominant, we have

$$
\begin{gather*}
1=\left|a_{i, i}\right|>\sum_{j \neq i}\left|a_{i, j}\right| \quad \forall i=1,2, \cdots, n . \tag{3}\\
\boldsymbol{A}-\boldsymbol{I}=\left[\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
a_{21} & 0 & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & 0
\end{array}\right] .
\end{gather*}
$$

Therefore, the max-norm of $\boldsymbol{A}-\boldsymbol{I}$ is

$$
\|\boldsymbol{A}-\boldsymbol{I}\|_{\infty}=\max _{i} \sum_{j \neq i}\left|a_{i, j}\right|<1 \quad(\text { From (3)) }
$$

Problem 14.2-5

We have

$$
\begin{equation*}
\underline{x}^{[k+1]}=\boldsymbol{A} \underline{x}^{[k]}+\underline{b} . \tag{4}
\end{equation*}
$$

Part a:
$\overline{\text { We will }}$ prove the following result using induction:

$$
\begin{equation*}
\underline{x}^{[k]}=\sum_{j=0}^{k-1} \boldsymbol{A}^{j} \underline{b}+\boldsymbol{A}^{k} \underline{x}^{[0]} \tag{5}
\end{equation*}
$$

For $k=1,(5)$ is same as

$$
\underline{x}^{[1]}=\underline{b}+\boldsymbol{A} \underline{x}^{[0]}
$$

which is true from (5).
Assume that (5) is true for some $k=n$ i.e.,

$$
\begin{aligned}
\underline{x}^{[n]} & =\sum_{j=0}^{n-1} \boldsymbol{A}^{j} \underline{b}+\boldsymbol{A}^{n} \underline{x}^{[0]} \\
\Longrightarrow \underline{x}^{[n+1]} & =\boldsymbol{A} \underline{x}^{[n]}+\underline{b} \quad(\text { using }(4)) \\
& =\boldsymbol{A}\left(\sum_{j=0}^{n-1} \boldsymbol{A}^{j} \underline{b}\right)+\boldsymbol{A}\left(\boldsymbol{A}^{n} \underline{x}^{[0]}\right)+\underline{b} \\
& =\sum_{j=1}^{n} \boldsymbol{A}^{j} \underline{b}+\boldsymbol{A}^{n+1} \underline{x}^{[0]}+\boldsymbol{A}^{0} \underline{b} \\
\underline{x}^{[n+1]} & =\sum_{j=0}^{n} \boldsymbol{A}^{j} \underline{b}+\boldsymbol{A}^{n+1} \underline{x}^{[0]} .
\end{aligned}
$$

Therefore, by mathematical induction (5) is true for all k.
From (5),

$$
\begin{align*}
(\boldsymbol{A}-\boldsymbol{I}) \underline{x}^{[k]} & =\boldsymbol{A} \underline{x}^{[k]}-\underline{x}^{[k]} \\
& =\boldsymbol{A}\left(\sum_{j=0}^{k-1} \boldsymbol{A}^{j} \underline{b}+\boldsymbol{A}^{k} \underline{x}^{[0]}\right)-\left(\sum_{j=0}^{k-1} \boldsymbol{A}^{j} \underline{b}+\boldsymbol{A}^{k} \underline{x}^{[0]}\right) \\
& =\sum_{j=1}^{k} \boldsymbol{A}^{j} \underline{b}-\sum_{j=0}^{k-1} \boldsymbol{A}^{j} \underline{b}+\boldsymbol{A}^{k+1} \underline{x}^{[0]}-\boldsymbol{A}^{k} \underline{x}^{[0]} \\
& =\boldsymbol{A}^{k} \underline{b}-\underline{b}+\boldsymbol{A}^{k+1} \underline{x}^{[0]}-\boldsymbol{A}^{k} \underline{x}^{[0]} \\
(\boldsymbol{A}-\boldsymbol{I}) \underline{x}^{[k]} & =\left(\boldsymbol{A}^{k}-\boldsymbol{I}\right) \underline{b}+(\boldsymbol{A}-\boldsymbol{I}) \boldsymbol{A}^{k} \underline{x}^{[0]} \\
\Longrightarrow \underline{x}^{[k]} & =(\boldsymbol{A}-\boldsymbol{I})^{-1}\left(\boldsymbol{A}^{k}-\boldsymbol{I}\right) \underline{b}+(\boldsymbol{A}-\boldsymbol{I})^{-1}(\boldsymbol{A}-\boldsymbol{I}) \boldsymbol{A}^{k} \underline{x}^{[0]} \\
\therefore \underline{x}^{[k]} & =(\boldsymbol{A}-\boldsymbol{I})^{-1}\left(\boldsymbol{A}^{k}-\boldsymbol{I}\right) \underline{b}+\boldsymbol{A}^{k} \underline{x}^{[0]} \tag{6}
\end{align*}
$$

Parts b, c:
$\overline{\text { Given }\|\boldsymbol{A}\|_{2}}=1$. Therefore the largest (in magnitude) eigen value of $\boldsymbol{A}^{H} \boldsymbol{A}$ has magnitude 1.

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
e & \lambda \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
e \cos \theta & \lambda \cos \theta-\sin \theta \\
e \sin \theta & \lambda \sin \theta+\cos \theta
\end{array}\right] \\
& \Longrightarrow \boldsymbol{A}^{H} \boldsymbol{A}=\left[\begin{array}{ll}
e^{*} & 0 \\
\lambda^{*} & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
e & \lambda \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
e^{*} & 0 \\
\lambda^{*} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
e & \lambda \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
e^{*} & 0 \\
\lambda^{*} & 1
\end{array}\right]\left[\begin{array}{cc}
e & \lambda \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
|e|^{2} & e^{*} \lambda \\
e \lambda^{*} & 1+|\lambda|^{2}
\end{array}\right] \\
& \operatorname{det}\left(\boldsymbol{A}^{H} \boldsymbol{A}-\boldsymbol{I} x\right)=0 \\
& \Longrightarrow \operatorname{det}\left[\begin{array}{cc}
|e|^{2}-x & e^{*} \lambda \\
e \lambda^{*} & 1+|\lambda|^{2}-x
\end{array}\right]=0 \\
& \Longrightarrow\left(1+|\lambda|^{2}-x\right)\left(|e|^{2}-x\right)-|e|^{2}|\lambda|^{2}=0 \\
& \Longrightarrow|e|^{2}-x|e|^{2}-x-|\lambda|^{2} x+x^{2}=0 \\
& \Longrightarrow x^{2}-x\left(1+|\lambda|^{2}+|e|^{2}\right)+|e|^{2}=0 \\
& \Delta=\left(1+|\lambda|^{2}+|e|^{2}\right)^{2}-4|e|^{2}=\left(1+|\lambda|^{2}-|e|^{2}\right)^{2}+4|\lambda|^{2}|e|^{2}>0
\end{aligned}
$$

Therefore, the roots are real.
Given $\|\boldsymbol{A}\|_{2}=1$ and since the roots are real, $x=-1$ or $x=1$ must be a root of the characteristic equation.

Substituting $x=-1$ gives $2+|\lambda|^{2}+2|e|^{2}=0$ which is not possible. Therefore $x=1$ is a root of the above equation $\Longrightarrow 1-\left(1+|\lambda|^{2}+|e|^{2}\right)-|e|^{2}=0 \Longrightarrow \lambda=0$. Using $\lambda=0$, the characteristic equation becomes

$$
x^{2}-\left(1+|e|^{2}\right) x+|e|^{2}=0 .
$$

Therefore, $|e|^{2}$ is the other eigen value of $\boldsymbol{A}^{H} \boldsymbol{A}$. Since $\|\boldsymbol{A}\|_{2}=1,\left|e^{2}\right| \leq 1$.

$$
\lambda=0 \Longrightarrow \boldsymbol{A}=\left[\begin{array}{ll}
e \cos \theta & \lambda \cos \theta-\sin \theta \\
e \sin \theta & \lambda \sin \theta+\cos \theta
\end{array}\right]=\left[\begin{array}{cc}
e \cos \theta & -\sin \theta \\
e \sin \theta & \cos \theta
\end{array}\right] .
$$

However, following plot shows that the orbit is a spiral (and not ellipse) for $\lambda=0$.

This contradicts the claim in the problem statement that $\|\boldsymbol{A}\|_{2}=1$ results in an elliptical orbit. Part d:
Following plots show the orbits for different values of e, λ, θ for $\underline{b}=\underline{x}^{[0]}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Observations:

1. The orbit becomes larger with an increase in λ.
2. $e<1$: The orbit is a spiral that converges to a point.
3. $e=1$: The orbit is an ellipse.
4. $e>1$: The orbit is a spiral that diverges to infinity.

Remark: The orbit is an ellipse if $e=1$. This is because both the eigen values of \boldsymbol{A} are of unit magnitude. This results in 'oscillatory' behavior of \boldsymbol{A}^{k} as k increases.

For parts c and d of the problem, we assume $e=1$ instead of $\|\boldsymbol{A}\|_{2}=1$ and obtain the center \underline{x}_{0} and \boldsymbol{U} for the general form of ellipse given by

$$
\begin{equation*}
\left(\underline{x}-\underline{x}_{0}\right)^{T} \boldsymbol{U}\left(\underline{x}-\underline{x}_{0}\right)=c . \tag{7}
\end{equation*}
$$

For $e=1$, we have

$$
\boldsymbol{A}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \lambda \cos \theta-\sin \theta \\
\sin \theta & \lambda \sin \theta+\cos \theta
\end{array}\right]
$$

We have

$$
\begin{aligned}
& \underline{x}^{[k]}=\boldsymbol{A} \underline{x}^{[k-1]}+\underline{b} \\
& \Longrightarrow \underline{x}^{[k]}=\boldsymbol{A} \underline{x}^{[k-1]}-\boldsymbol{A}(I-\boldsymbol{A})^{-1} \underline{b}+(I-\boldsymbol{A})^{-1} \underline{b} \\
& \underline{x}^{[k]}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}=\boldsymbol{A}\left(\underline{x}^{[k]}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right) \\
& \Longrightarrow\left(\underline{x}^{[k]}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right)^{T} \boldsymbol{U}\left(\underline{x}^{[k]}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right)=\left(\underline{x}^{[k-1]}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right)^{T} \boldsymbol{A}^{H} \boldsymbol{U} \boldsymbol{A}\left(\underline{x}^{[k-1]}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right)
\end{aligned}
$$

Setting $\boldsymbol{A}^{H} \boldsymbol{U} \boldsymbol{A}=\boldsymbol{U}$ and comparing this to the equation of an ellipse, we have the center given by

$$
\underline{x}_{0}=(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}
$$

Transposing the equation (7), we can easily see that $\boldsymbol{U}=\boldsymbol{U}^{T}$. Also, the equation of the ellipse will still have the same form even if we scale the matrix \boldsymbol{U}. Therefore, we can set one of the elements of \boldsymbol{U} to 1. The matrix $\boldsymbol{U}=\left[\begin{array}{ll}1 & u \\ u & v\end{array}\right]$ can be obtained by solving

$$
\begin{gathered}
\boldsymbol{U}=\boldsymbol{A}^{H} \boldsymbol{U} \boldsymbol{A} \\
\Longrightarrow\left[\begin{array}{ll}
1 & u \\
u & v
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\lambda \cos \theta-\sin \theta & \lambda \sin \theta+\cos \theta
\end{array}\right]\left[\begin{array}{ll}
1 & u \\
u & v
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\lambda \cos \theta-\sin \theta & \lambda \sin \theta+\cos \theta
\end{array}\right] \\
=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\lambda \cos \theta-\sin \theta & \lambda \sin \theta+\cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta+u \lambda \cos \theta-u \sin \theta & \sin \theta+u \lambda \sin \theta+u \cos \theta \\
u \cos \theta+v \lambda \cos \theta-v \sin \theta & u \sin \theta+v \lambda \sin \theta+v \cos \theta
\end{array}\right] \\
\Longrightarrow 1
\end{gathered} \begin{aligned}
& \Longrightarrow \cos ^{2} \theta+u\left(\lambda \cos ^{2} \theta\right)+v\left(\lambda \cos \theta \sin \theta-\sin ^{2} \theta\right) \\
& u=\sin \theta \cos \theta+u(1+\lambda \sin \theta \cos \theta)+v\left(\lambda \sin ^{2} \theta+\sin \theta \cos \theta\right) \\
& v=\lambda \sin \theta \cos \theta-\sin ^{2} \theta+u\left(\lambda^{2} \sin \theta \cos \theta+\lambda \cos ^{2} \theta\right)+v\left(\lambda^{2} \sin ^{2} \theta+2 \lambda \sin \theta \cos \theta+\cos ^{2} \theta\right)
\end{aligned}
$$

Solving the above set of equations will result in

$$
\begin{aligned}
u & =\tan \theta \\
v & =-1
\end{aligned}
$$

Therefore, $\boldsymbol{U}=\left[\begin{array}{cc}1 & \tan \theta \\ \tan \theta & -1\end{array}\right]$. Scaling by $\cos \theta$, we have

$$
\boldsymbol{U}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

The constant c depends on the initial position $\underline{x}^{[0]}$. Therefore the equation of the ellipse is
$\left(\underline{x}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right)^{T}\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]\left(\underline{x}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right)=\left(\underline{x}^{[0]}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right)^{T}\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]\left(\underline{x}^{[0]}-(\boldsymbol{I}-\boldsymbol{A})^{-1} \underline{b}\right)$.

