Indian Institute of Science
 E9-252: Mathematical Methods and Techniques in Signal Processing
 Instructor: Shayan G. Srinivasa
 Home Work \#4, Fall 2016

Late submission policy: Points scored $=$ Correct points scored $\times e^{-d}, d=$ \# days late
Assigned date: Nov. $13^{\text {th }} 2016$
Due date: Nov. $20^{\text {th }} 2016$ by end of the day.

Problem 1: Solve problems 4.4, 4.11, 4.15 from M. Hayes book.
(30 pts.)
Problem 2: Let

$$
f(t)=\left\{\begin{array}{l}
\pi-t, 0 \leq t \leq \pi \\
-\pi-t,-\pi \leq t<0
\end{array}\right.
$$

(1) Obtain the Fourier series of $f(t)$ after a periodic extension. Sketch the Fourier series for some finite values of the series expansion.
(2) Let $g_{N}(x)=2 \sum_{n=1}^{N} \frac{\sin (n x)}{n}-(\pi-x)$ i.e., for some finite N. Obtain the first null i.e., θ_{N} of $g_{N}^{\prime}(x)$ immediately to the right side of $x=0$. By evaluation, show that $\lim _{N \rightarrow \infty} g_{N}\left(\theta_{N}\right) \approx 0.52$. What do you conclude?

Hint: You might find the following equation useful from basic calculus.

$$
g_{N}(x)=\int_{0}^{\theta_{N}} g_{N}^{\prime}(x) d x+g_{N}(0) .
$$

