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Problem 4.4

Ĥ (z) =
b (0) + b (1) z−1 + b (2) z−2

1 + a (1) z−1 + a (2) z−2

Part a:
h (0) = −1; h (1) = 2; h (2) = 3; h (3) = 2; h (4) = 1
Using Pade’s method, we haveh (0) 0 0

h (1) h (0) 0
h (2) h (1) h (0)

 1
a (1)
a (2)

 =

b (0)b (1)
b (2)


[
h (3) h (2) h (1)
h (4) h (3) h (2)

] 1
a (1)
a (2)

 =

[
0
0

]
Solving the above equations gives us

a (1) = −4

5
; a (2) =

1

5
; b (0) = −1; b (1) = 14

5
; b (0) =

6

5
;

=⇒ Ĥ (z) =
−1 + 14

5 z
−1 + 6

5z
−2

1− 4
5z
−1 + 1

5z
−2 .

Part b:
If there is noise in the observed signal, we cannot determine the order of the system. Assuming

that there is no noise, Pade’s method should give exact model if the order is correct. From the model
obtained using Pade’s method,

ĥ (5) =
2

5
6= h (5) .

Therefore, the hypothesis about the order is not correct.
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Problem 4.11

H (z) =
Bq (z)

Ap (z)
=

b (0)

1 +
∑p
k=1 ap (k) z

−2k

For Prony’s method, we define the error as

E (z) = X (z)Ap (z)−Bq (z)

=⇒ e (n) = x (n) +

p∑
k=1

ap (k)x (n− 2k)− b0δ (n) .

We minimize the squared error given by

Ep,q =
∞∑

k=q+1

|e (k)|2

∂Ep.q
∂a∗p (l)

= 0, l = 1, 2, · · · , p

=⇒
∞∑
k=1

[
x (k) +

k∑
g=1

ap (g)x (k − 2g)

]
x∗ (k − 2l) = 0

=⇒
k∑
g=1

ap (q) rx (2l, 2k) = −rx (2l, 0) , l = 1, 2, · · · , p

where rx (k, l) =
∑∞
n=1 x (n− l)x∗ (n− k). Writing the above equations in matrix form, we have
rx (2, 2) rx (2, 4) · · · rx (2, 2p)
rx (4, 2) rx (4, 4) · · · rx (4, 2p)

...
...

. . .
...

rx (2p, 2) rx (2p, 4) · · · rx (2p, 2p)


︸ ︷︷ ︸

Rx


ap (1)
ap (2)

...
ap (p)


︸ ︷︷ ︸

ap

= −


rx (2, 0)
rx (4, 0)

...
rx (2p, 0)


︸ ︷︷ ︸

rx

=⇒ Rxap = −rx.

We can solve the above equations by inverting Rx if Rx is full rank matrix. A pseudo-inverse can
be used if Rx is it is not a full rank matrix.
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Problem 4.15

H (z) =
b (0)

1− a (1) z−1

=⇒ h (n) = b (0) (a (1))
n
u (n) .

The squared error is

E =

N−1∑
n=0

[x (n)− h (n)]2

=

N−1∑
n=0

[x (n)− b (0) (a (1))n]2

To minimize E ,

∂E
∂b (0)

= 0

=⇒ −
N−1∑
n=0

2 (a (1))
n
[x (n)− b (0) (a (1))n] = 0

=⇒ b (0)
(a (1))

2N − 1

(a (1))
2 − 1

=

N−1∑
n=0

(a (1))
n
x (n)

=⇒ b (0) =
(a (1))

2 − 1

(a (1))
2N − 1

N−1∑
n=0

(a (1))
n
x (n) .

This gives b (0) as a function of a (1).
Similarly,

∂E
∂a (1)

= 0

=⇒ −
N−1∑
n=0

nb (0) (a (1))
n−1

[x (n)− b (0) (a (1))n] = 0

=⇒ b (0)

N−1∑
n=0

n (a (1))
n−1

x (n)− b (0) a (1)
N−1∑
n=0

n
(
(a (1))

2
)n−1

= 0 (1)

We know that
N−1∑
n=0

rn =
rN − 1

r − 1

=⇒
N−1∑
n=0

nrn−1 =
d

dr

N−1∑
n=0

rn =
NrN−1

r − 1
− rN − 1

(r − 1)
2 =

(N − 1) rN −NrN−1 + 1

(r − 1)
2

Therefore, we can write (1) as

b (0)

N−1∑
n=0

n (a (1))
n−1

x (n)− b (0) a (1) (N − 1) (a (1))
2N −N (a (1))

2N−2
+ 1

(a (1))
2 − 1

= 0

=⇒ b (0)

[(
(a (1))

2 − 1
)(N−1∑

n=0

n (a (1))
n−1

x (n)

)
+ (N − 1) (a (1))

2N+1 −N (a (1))
2N+1

+ 1

]
= 0
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Since b (0) = 0 gives H (z) = 0, b (0) 6= 0. Therefore, the above equation becomes

(
(a (1))

2 − 1
)(N−1∑

n=0

n (a (1))
n−1

x (n)

)
+ (N − 1) (a (1))

2N+1 −N (a (1))
2N+1

+ 1 = 0.

a (1) can be obtained by solving the above polynomial of order (2N + 1). To make sure that the
solution to the polynomial minimizes E , we need to check if ∂2E

∂a(1)2
> 0.
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Problem 2
Part 1:
Given

f (t) =

{
π − t, 0 ≤ t ≤ π

−π < t < 0

and f (t) = f (t+ 2π).
The Fourier series coefficients are given by

a0 =
1

2π

∫ π

−π
f (t) dt = 0,

ak =
1

π

∫ π

−π
f (t) cos (kt) dt = 0,

bk =
1

π

∫ π

−π
f (t) sin (kt) dt =

2

k
;

Therefore,

f (t) =

∞∑
k=1

2

k
sin (kt) .

The Fourier series coefficients are sketched below:
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f (t) approximated using upto N terms of the Fourier series is plotted below for different values of
N :
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Part 2:

gN (x) = 2

N∑
n=1

sin (nx)

n
− (π − x)

Using the result derived in the class,

g′N (x) = 2

[
N∑
n=1

cos (nx) +
1

2

]
=


sin(N+ 1

2 )x
sin x

2
, x 6= 0

2N + 1, x = 0
.
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Therefore,

g′N (x) = 0

=⇒
sin
(
N + 1

2

)
x

sin x
2

= 0, x 6= 0

=⇒ sin

(
N +

1

2

)
x = 0, x 6= 0

=⇒ x =
kπ(

N + 1
2

) , k ∈ Z \ {0}

Therefore, the smallest positive root of g′N (x) is θN = 2π
2N+1 .

Following shows the behavior of gN (θN ) as a function of N .
N 10 50 100 500 1000 108

gN (θN ) 0.56465848 0.56238411 0.56230737 0.56228249 0.56228171 0.56228145
We observe that

lim
N→∞

gN (θN ) ≈ 0.56228

Interpretation: This is the Gibb’s phenomenon that is observed at the point of discontinuity (x = 0
i.e., N → ∞, θN → 0). There is limN→∞ gN (θN ) = 0.5623 shows that the Fourier approximation of
the signal up to N terms results in an overshoot of the signal near θN . As N → ∞, the overshoot
appears near the point of discontinuity.
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