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Problem 4.17
Part a:

x1 [2n] = z [n]
z1[2n+1]=0

oo

yWinl= Y a1klgln -k

k=—oc0

=3 @ gln-2] (o f2n+1]=0)

l=—0c0
0o

yWinl= Y «lgln—21

l=—00

We want y(1) [2n] = z [2n] Vn

= z[2n] = Z z [l g[2n — 2I]

l=—00

= x[2n](1—g[0])—Zm[ﬂg[Zn—Ql] =0
1£0

Since this is true for all 2 [n], we have

Part b:
‘We have

y® 2n] = 2 [n]
— y [4n] =y [2n] = 2 [n].

Assume y®) [25n] = 2 [n]. This implies y**+V [2¥*+1n] = y(*) [2kn] = 2 [n]. Therefore, by induc-
tion,

y(k)[an]:x[n] Vk=0,1,---; ne€Z.



Part c:

1 1
G(z) = 524—14—52_1.

Following shows y*) [n] for an example z [n] and different choices of k.
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Part d:

As k — oo, the function 3(°) (¢) is a continuous function that linearly interpolates the samples
x[n] and z[n + 1] in the interval t € [n,n+ 1], n € Z.

From Problem 4.18, the closed form expression for y(>) (t) is

oo

vy )= x> (t—n)

n=—oo

where
l—z, 0<x<1

gty =L{14z -1<2<0
0 otherwise.

From the figure we can see that y(°°) (t) is continuous everywhere but need not be differentiable
everywhere.



Problem 4.18

Part a:

‘We have
o
T
g

where
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From the plots, we can observe that

1) =

You can prove this formally as follows:
c[n] and f© [n] are even functions. Therefore, f*) [n] and f(°) (t) are all even functions. We will
prove only for t > 0.
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0<z<1
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otherwise.

Observation 1: f(k) [n] is non-zero only for — (2’c - 1) <n< (2’C — 1) and f(k) [n] > 0.

Proof: (By induction) This is true for & = 0,1. Assume that it is true for f*) [n] ie., F*®) (2)
is a polynomial with — (2’“ — 1) and (2’“ — 1) as the least and highest order of z and all coefficients
positive. We have

FEH) () = O (2) F®) (z%)

F®) (2%) has — (2""! —2) and (2"™! —2) as the least and highest order of z. Since C'(z) =
12+ 1+ 1271 and F® (22) has all positive coefficients, therefore F(**1 (z) has

(2k+1 - 1) as the least and highest order of z.

Observation 2: f(*) [n)=1—2%,0<n< (2’“ — 1)

2k

Proof: (By induction) This is true for & = 0,1. Assume that it is true for £ [n].

— (21— 1) and



fE = 30 f P el - 2]
_ FO) [g] ,m is even
éf(k) [";1] + %f(k) ["TH] ,n is odd.

n .
— SRFT , 1S even

1

{é (1_ n2—kl) _’_%(1_ "2";1) ,n is odd.
1
1

2k 2k
1 2 3

Taking k — oo, we have f(>) (1) =1—1t, t€[0,1]. Since f(°) (¢) is an even function, we have

1—z, 0<z<1
f(oo)(t): 1+2, —-1<x<0
0, otherwise.
Part b:

k—1) [_1 L o1y [t 1
o ] o 3]

Notice that ¢(°°) (t) is linear in s[n] i.e., if g; (t) is obtained with g(®) [n] = s; [n] and géoo) (t) is
obtained with ¢(® [n] = s5 [n], then with ¢ [n] = asy [n] + bss [n] results in g (t) = ag!™ (¢) +
bgéoo) (t) for any constants a, b.

Also, if g (t) is obtained with g(®) [n] = s[n], then ¢(® [n] = s [n] will result in ¢(°) (t) = g (t — k).

From the part 1, we know that ¢(») [n] = § [n] results in g (t) = f(°) (t). Therefore,

9Ol =shl= Y §li—nlgli

— W= Y gl -1,
Part c:
We have
f(t) =f(2x)+%[f(2m+1)+f(2x—1)} - 116 [f (22 +3) + f (22 — 3)].

F® ] = c[n] « fEY [2n]
where C'(2) =14 % [z + 271 — & [z8 +279].
Following shows f*) [n] for different values of k as well as f(>) ().
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Similar to part b, we have

()= 3 gl £ (- 1).



Problem 2

z[n] - 1_\/%—1 y1[n] q J, 9 y1[n]
1ozt Yya[n] Ya[n] 1—s—1
- L . |2 - = -2
1—};/25_1 \L )
Let L be the length of the input sequence i.e., z [n] is restricted to 0 < n < L — 1. Therefore,
)= (@0~ -1)
nll = Js @l —l—1). n=12- L1
1
yz[O]:E(sc[O]—i—m[L—l])
1
yg[n]:ﬁ(x[n]—i—x[n—l]), n=1,2---,L—-1
Energy at the input is
L-1
Eyp =Y (x[n])’
n=0
Case L is odd:
yl[n]:{\}i(x[O]—x[L—l]), n=0
%(m[Zn]—xBn—l]), n=1, Lt
. L (z[0]+=z[L-1]), n=0
nl =4 V2
g2 ] {\};(x[Qn]—Fx[Qn—l]), n=1,-..,1
o e @O+ (@[L-1])7, n=0
= (1 [n])"+ (@2[n])" = {(x[2n])2 F@2n—1)2, n=1,..., L2

+ (@ [2)” + (@ 1) + (@ [4])° + (@ [3)* + -

— @12+ Y (@ln])?
> Eip~ )

Therefore the energy is not conserved.
Case L is even:

+ (@[l = 1)+ (z[L - 2))°



ﬂ[n]—{x}?(ﬂc[o]xwl]% n=0
1 J5 (@] —x2n—1]), n=1,.. 32
"

ﬂz[n]{ (x[0] + 2 [L = 1]), n=>0
L (z2n] +z2n—1)), n=1,---,L52

Therefore the energy is conserved.

When L is even, the input to the second stage is of length % For the energy conservation in the
second stage, % must be even, i.e., L is a multiple of 22.

Extending it to k-stage wavelet filter bank, energy is conserved if L is a multiple of 2¥. If the input
length is not multiple of 2%, zeros can be padded to make the input length multiple of 2%,



