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Problem 4.17
Part a:

x1 [2n] = x [n]

x1 [2n+ 1] = 0

y(1) [n] =

∞∑
k=−∞

x1 [k] g [n− k]

=

∞∑
l=−∞

x1 [2l] g [n− 2l] (∵ x1 [2n+ 1] = 0)

y(1) [n] =

∞∑
l=−∞

x [l] g [n− 2l]

We want y(1) [2n] = x [2n]∀n

=⇒ x [2n] =

∞∑
l=−∞

x [l] g [2n− 2l]

=⇒ x [2n] (1− g [0])−
∑
l 6=0

x [l] g [2n− 2l] = 0

Since this is true for all x [n], we have

g [0] = 1,

g [2n] = 0, n ∈ Z \ {0} .

Part b:
We have

y(1) [2n] = x [n]

=⇒ y(2) [4n] = y(1) [2n] = x [n] .

Assume y(k)
[
2kn

]
= x [n]. This implies y(k+1)

[
2k+1n

]
= y(k)

[
2kn

]
= x [n]. Therefore, by induc-

tion,
y(k)

[
2kn

]
= x [n] ∀k = 0, 1, · · · ; n ∈ Z.
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Part c:

G (z) =
1

2
z + 1 +

1

2
z−1.

Following shows y(k) [n] for an example x [n] and different choices of k.

1 2 3 4 5 6 7
−2

0

2

4

6

n

x
[n

]

0 2 4 6 8 10 12 14 16
−2

0

2

4

6

n

y
1
[n

]

0 5 10 15 20 25 30
−2

0

2

4

6

n

y
2
[n

]

0 10 20 30 40 50 60
−2

0

2

4

6

n

y
3
[n

]
0 20 40 60 80 100 120

−2

0

2

4

6

n

y
4
[n

]

0 1 2 3 4 5 6 7 8
−2

0

2

4

6

t

y
(t

)

Part d:
As k → ∞, the function y(∞) (t) is a continuous function that linearly interpolates the samples

x [n] and x [n+ 1] in the interval t ∈ [n, n+ 1] , n ∈ Z.
From Problem 4.18, the closed form expression for y(∞) (t) is

y(∞) (t) =

∞∑
n=−∞

x [n] g(∞) (t− n)

where

g(∞) (t) =


1− x, 0 ≤ x ≤ 1

1 + x, −1 ≤ x < 0

0 otherwise.

From the figure we can see that y(∞) (t) is continuous everywhere but need not be differentiable
everywhere.
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Problem 4.18
Part a:
We have

f (0) [n] = δ [n]

f (1) [n] = c [n] ∗ f (0) [2n] = c [n] .

f (k) [n] = c [n] ∗ f (k−1) [2n] .

where
C (z) =

1

2
z + 1 +

1

2
z−1.
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From the plots, we can observe that

f (∞) (t) =


1− x, 0 ≤ x ≤ 1

1 + x, −1 ≤ x < 0

0, otherwise.

You can prove this formally as follows:
c [n] and f (0) [n] are even functions. Therefore, f (k) [n] and f (∞) (t) are all even functions. We will

prove only for t ≥ 0.
Observation 1: f (k) [n] is non-zero only for −

(
2k − 1

)
≤ n ≤

(
2k − 1

)
and f (k) [n] ≥ 0.

Proof: (By induction) This is true for k = 0, 1. Assume that it is true for f (k) [n] i.e., F (k) (z)
is a polynomial with −

(
2k − 1

)
and

(
2k − 1

)
as the least and highest order of z and all coefficients

positive. We have
F (k+1) (z) = C (z)F (k)

(
z2
)

F (k)
(
z2
)
has −

(
2k+1 − 2

)
and

(
2k+1 − 2

)
as the least and highest order of z. Since C (z) =

1
2z + 1 + 1

2z
−1 and F (k)

(
z2
)
has all positive coefficients, therefore F (k+1) (z) has −

(
2k+1 − 1

)
and(

2k+1 − 1
)
as the least and highest order of z.

Observation 2: f (k) [n] = 1− n
2k
, 0 ≤ n ≤

(
2k − 1

)
Proof: (By induction) This is true for k = 0, 1. Assume that it is true for f (k) [n].
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f (k+1) [n] =

∞∑
i=−∞

f (k) [i] c [n− 2i]

=

{
f (k)

[
n
2

]
, n is even

1
2f

(k)
[
n−1
2

]
+ 1

2f
(k)
[
n+1
2

]
, n is odd.

=

{
1− n

2k+1 , n is even
1
2

(
1− n−1

2k

)
+ 1

2

(
1− n+1

2k

)
, n is odd.

=

{
1− n

2k+1 , n is even
1− n

2k+1 , n is odd.

f (∞)
( n

2k

)
= f (k) (n) = 1− n

2k

=⇒ f (∞) (t) = 1− t, t = 0,
1

2k
,

2

2k
,

3

2k
· · · ; ∀k.

Taking k →∞, we have f (∞) (t) = 1− t, t ∈ [0, 1]. Since f (∞) (t) is an even function, we have

f (∞) (t) =


1− x, 0 ≤ x ≤ 1

1 + x, −1 ≤ x < 0

0, otherwise.

Part b:

g(0) [n] = s [n]

g(k)
[

2n

2k

]
= g(k−1)

[ n

2k−1

]
,

g(k)
[

2n+ 1

2k

]
=

1

2
g(k−1)

[ n

2k−1

]
+

1

2
g(k−1)

[
n+ 1

2k−1

]
.

Notice that g(∞) (t) is linear in s [n] i.e., if g1 (t) is obtained with g(0) [n] = s1 [n] and g
(∞)
2 (t) is

obtained with g(0) [n] = s2 [n], then with g(0) [n] = as1 [n] + bs2 [n] results in g(∞) (t) = ag
(∞)
1 (t) +

bg
(∞)
2 (t) for any constants a, b.
Also, if g (t) is obtained with g(0) [n] = s [n], then g(0) [n] = s [n] will result in g(∞) (t) = g (t− k).
From the part 1, we know that g(0) [n] = δ [n] results in g (t) = f (∞) (t). Therefore,

g(0) [n] = s [n] =

∞∑
i=−∞

δ [i− n] g [i]

=⇒ g(∞) (t) =

∞∑
i=−∞

g [i] f (∞) (i− t) .

Part c:
We have

f (t) = f (2x) +
9

16
[f (2x+ 1) + f (2x− 1)]− 1

16
[f (2x+ 3) + f (2x− 3)] .

i.e.,
f (k) [n] = c [n] ∗ f (k−1) [2n]

where C (z) = 1 + 9
16

[
z + z−1

]
− 1

16

[
z3 + z−3

]
.

Following shows f (k) [n] for different values of k as well as f (∞) (t).
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Similar to part b, we have

g(∞) (t) =

∞∑
i=−∞

g [i] f (∞) (i− t) .
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Problem 2

1−z−1√
2

1+z−1√
2

↓ 2

↓ 2 1−z−1√
2

1+z−1√
2

↓ 2

↓ 2

x[n] y1[n]

y2[n]

ȳ1[n]

ȳ2[n]

Let L be the length of the input sequence i.e., x [n] is restricted to 0 ≤ n ≤ L− 1. Therefore,

y1 [0] =
1√
2

(x [0]− x [L− 1])

y1 [n] =
1√
2

(x [n]− x [n− 1]) , n = 1, 2, · · · , L− 1.

y2 [0] =
1√
2

(x [0] + x [L− 1])

y2 [n] =
1√
2

(x [n] + x [n− 1]) , n = 1, 2, · · · , L− 1.

Energy at the input is

Eip =

L−1∑
n=0

(x [n])
2

Case L is odd:

ȳ1 [n] =

{
1√
2

(x [0]− x [L− 1]) , n = 0
1√
2

(x [2n]− x [2n− 1]) , n = 1, · · · , L−12

ȳ2 [n] =

{
1√
2

(x [0] + x [L− 1]) , n = 0
1√
2

(x [2n] + x [2n− 1]) , n = 1, · · · , L−12

=⇒ (ȳ1 [n])
2

+ (ȳ2 [n])
2

=

{
(x [0])

2
+ (x [L− 1])

2
, n = 0

(x [2n])
2

+ (x [2n− 1])
2
, n = 1, · · · , L−12

Energy at the output is

L−1
2∑

n=0

(
(ȳ1 [n])

2
+ (ȳ2 [n])

2
)

= (x [0])
2

+ (x [L− 1])
2

+ (x [2])
2

+ (x [1])
2

+ (x [4])
2

+ (x [3])
2

+ · · ·+ (x [L− 1])
2

+ (x [L− 2])
2

= (x [L− 1])
2

+

L−1∑
n=0

(x [n])
2

> Eip.

Therefore the energy is not conserved.
Case L is even:
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ȳ1 [n] =

{
1√
2

(x [0]− x [L− 1]) , n = 0
1√
2

(x [2n]− x [2n− 1]) , n = 1, · · · , L−22

ȳ2 [n] =

{
1√
2

(x [0] + x [L− 1]) , n = 0
1√
2

(x [2n] + x [2n− 1]) , n = 1, · · · , L−22

=⇒ (ȳ1 [n])
2

+ (ȳ2 [n])
2

=

{
(x [0])

2
+ (x [L− 1])

2
, n = 0

(x [2n])
2

+ (x [2n− 1])
2
, n = 1, · · · , L−22

Energy at the output is

L−1
2∑

n=0

(
(ȳ1 [n])

2
+ (ȳ2 [n])

2
)

= (x [0])
2

+ (x [L− 1])
2

+ (x [2])
2

+ (x [1])
2

+ (x [4])
2

+ (x [3])
2

+ · · ·+ (x [L− 2])
2

+ (x [L− 3])
2

=

L−1∑
n=0

(x [n])
2

= Eip.

Therefore the energy is conserved.
When L is even, the input to the second stage is of length L

2 . For the energy conservation in the
second stage, L

2 must be even, i.e., L is a multiple of 22.
Extending it to k-stage wavelet filter bank, energy is conserved if L is a multiple of 2k. If the input

length is not multiple of 2k, zeros can be padded to make the input length multiple of 2k.
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