E9-252: Mathematical Methods and Techniques in Signal Processing Homework 3 Solutions

Instructor: Shayan Garani Srinivasa
Solutions Prepared By: Chaitanya Kumar Matcha
23 November 2016

Problem 4.17

Part a:

$$
\begin{aligned}
x_{1}[2 n] & =x[n] \\
x_{1}[2 n+1] & =0 \\
y^{(1)}[n]= & \sum_{k=-\infty}^{\infty} x_{1}[k] g[n-k] \\
= & \sum_{l=-\infty}^{\infty} x_{1}[2 l] g[n-2 l] \quad\left(\because x_{1}[2 n+1]=0\right) \\
y^{(1)}[n]= & \sum_{l=-\infty}^{\infty} x[l] g[n-2 l]
\end{aligned}
$$

We want $y^{(1)}[2 n]=x[2 n] \forall n$

$$
\begin{aligned}
\Longrightarrow x[2 n] & =\sum_{l=-\infty}^{\infty} x[l] g[2 n-2 l] \\
\Longrightarrow x[2 n](1-g[0])-\sum_{l \neq 0} x[l] g[2 n-2 l] & =0
\end{aligned}
$$

Since this is true for all $x[n]$, we have

$$
\begin{aligned}
g[0] & =1, \\
g[2 n] & =0, \quad n \in \mathbb{Z} \backslash\{0\} .
\end{aligned}
$$

Part b:
We have

$$
\begin{aligned}
y^{(1)}[2 n] & =x[n] \\
\Longrightarrow y^{(2)}[4 n] & =y^{(1)}[2 n]=x[n] .
\end{aligned}
$$

Assume $y^{(k)}\left[2^{k} n\right]=x[n]$. This implies $y^{(k+1)}\left[2^{k+1} n\right]=y^{(k)}\left[2^{k} n\right]=x[n]$. Therefore, by induction,

$$
y^{(k)}\left[2^{k} n\right]=x[n] \quad \forall k=0,1, \cdots ; \quad n \in \mathbb{Z} .
$$

Part c:

$$
G(z)=\frac{1}{2} z+1+\frac{1}{2} z^{-1} .
$$

Following shows $y^{(k)}[n]$ for an example $x[n]$ and different choices of k.

Part d:

As $k \rightarrow \infty$, the function $y^{(\infty)}(t)$ is a continuous function that linearly interpolates the samples $x[n]$ and $x[n+1]$ in the interval $t \in[n, n+1], \quad n \in \mathbb{Z}$.

From Problem 4.18, the closed form expression for $y^{(\infty)}(t)$ is

$$
y^{(\infty)}(t)=\sum_{n=-\infty}^{\infty} x[n] g^{(\infty)}(t-n)
$$

where

$$
g^{(\infty)}(t)= \begin{cases}1-x, & 0 \leq x \leq 1 \\ 1+x, & -1 \leq x<0 \\ 0 & \text { otherwise }\end{cases}
$$

From the figure we can see that $y^{(\infty)}(t)$ is continuous everywhere but need not be differentiable everywhere.

Problem 4.18

Part a:

$\overline{\text { We have }}$

$$
\begin{aligned}
f^{(0)}[n] & =\delta[n] \\
f^{(1)}[n] & =c[n] * f^{(0)}[2 n]=c[n] \\
f^{(k)}[n] & =c[n] * f^{(k-1)}[2 n] .
\end{aligned}
$$

where

$$
C(z)=\frac{1}{2} z+1+\frac{1}{2} z^{-1}
$$

From the plots, we can observe that

$$
f^{(\infty)}(t)= \begin{cases}1-x, & 0 \leq x \leq 1 \\ 1+x, & -1 \leq x<0 \\ 0, & \text { otherwise }\end{cases}
$$

You can prove this formally as follows:
$c[n]$ and $f^{(0)}[n]$ are even functions. Therefore, $f^{(k)}[n]$ and $f^{(\infty)}(t)$ are all even functions. We will prove only for $t \geq 0$.

Observation 1: $f^{(k)}[n]$ is non-zero only for $-\left(2^{k}-1\right) \leq n \leq\left(2^{k}-1\right)$ and $f^{(k)}[n] \geq 0$.
Proof: (By induction) This is true for $k=0,1$. Assume that it is true for $f^{(k)}[n]$ i.e., $F^{(k)}(z)$ is a polynomial with $-\left(2^{k}-1\right)$ and $\left(2^{k}-1\right)$ as the least and highest order of z and all coefficients positive. We have

$$
F^{(k+1)}(z)=C(z) F^{(k)}\left(z^{2}\right)
$$

$F^{(k)}\left(z^{2}\right)$ has $-\left(2^{k+1}-2\right)$ and $\left(2^{k+1}-2\right)$ as the least and highest order of z. Since $C(z)=$ $\frac{1}{2} z+1+\frac{1}{2} z^{-1}$ and $F^{(k)}\left(z^{2}\right)$ has all positive coefficients, therefore $F^{(k+1)}(z)$ has $-\left(2^{k+1}-1\right)$ and $\left(2^{k+1}-1\right)$ as the least and highest order of z.

Observation 2: $f^{(k)}[n]=1-\frac{n}{2^{k}}, 0 \leq n \leq\left(2^{k}-1\right)$
Proof: (By induction) This is true for $k=0,1$. Assume that it is true for $f^{(k)}[n]$.

$$
\begin{aligned}
f^{(k+1)}[n] & =\sum_{i=-\infty}^{\infty} f^{(k)}[i] c[n-2 i] \\
& =\left\{\begin{array}{ll}
f^{(k)}\left[\frac{n}{2}\right] & , n \text { is even } \\
\frac{1}{2} f^{(k)}\left[\frac{n-1}{2}\right]+\frac{1}{2} f^{(k)}\left[\frac{n+1}{2}\right] & , n \text { is odd. } \\
& = \begin{cases}1-\frac{n}{2^{k+1}} & , n \text { is even } \\
\frac{1}{2}\left(1-\frac{n-1}{2^{k}}\right)+\frac{1}{2}\left(1-\frac{n+1}{2^{k}}\right) & , n \text { is odd. }\end{cases} \\
& = \begin{cases}1-\frac{n}{2^{k+1}} & , n \text { is even } \\
1-\frac{n}{2^{k+1}} & , n \text { is odd. }\end{cases} \\
f^{(\infty)}\left(\frac{n}{2^{k}}\right)=f^{(k)}(n)=1-\frac{n}{2^{k}} \\
\Longrightarrow f^{(\infty)}(t)=1-t, & t=0, \frac{1}{2^{k}}, \frac{2}{2^{k}}, \frac{3}{2^{k}} \cdots ;
\end{array} \quad \forall k .\right.
\end{aligned}
$$

Taking $k \rightarrow \infty$, we have $f^{(\infty)}(t)=1-t, \quad t \in[0,1]$. Since $f^{(\infty)}(t)$ is an even function, we have

$$
f^{(\infty)}(t)= \begin{cases}1-x, & 0 \leq x \leq 1 \\ 1+x, & -1 \leq x<0 \\ 0, & \text { otherwise }\end{cases}
$$

Part b:

$$
\begin{aligned}
g^{(0)}[n] & =s[n] \\
g^{(k)}\left[\frac{2 n}{2^{k}}\right] & =g^{(k-1)}\left[\frac{n}{2^{k-1}}\right], \\
g^{(k)}\left[\frac{2 n+1}{2^{k}}\right] & =\frac{1}{2} g^{(k-1)}\left[\frac{n}{2^{k-1}}\right]+\frac{1}{2} g^{(k-1)}\left[\frac{n+1}{2^{k-1}}\right] .
\end{aligned}
$$

Notice that $g^{(\infty)}(t)$ is linear in $s[n]$ i.e., if $g_{1}(t)$ is obtained with $g^{(0)}[n]=s_{1}[n]$ and $g_{2}^{(\infty)}(t)$ is obtained with $g^{(0)}[n]=s_{2}[n]$, then with $g^{(0)}[n]=a s_{1}[n]+b s_{2}[n]$ results in $g^{(\infty)}(t)=a g_{1}^{(\infty)}(t)+$ $b g_{2}^{(\infty)}(t)$ for any constants a, b.

Also, if $g(t)$ is obtained with $g^{(0)}[n]=s[n]$, then $g^{(0)}[n]=s[n]$ will result in $g^{(\infty)}(t)=g(t-k)$.
From the part 1, we know that $g^{(0)}[n]=\delta[n]$ results in $g(t)=f^{(\infty)}(t)$. Therefore,

$$
\begin{aligned}
g^{(0)}[n] & =s[n]=\sum_{i=-\infty}^{\infty} \delta[i-n] g[i] \\
\Longrightarrow g^{(\infty)}(t) & =\sum_{i=-\infty}^{\infty} g[i] f^{(\infty)}(i-t)
\end{aligned}
$$

Part c:

$\overline{\text { We have }}$

$$
f(t)=f(2 x)+\frac{9}{16}[f(2 x+1)+f(2 x-1)]-\frac{1}{16}[f(2 x+3)+f(2 x-3)]
$$

i.e.,

$$
f^{(k)}[n]=c[n] * f^{(k-1)}[2 n]
$$

where $C(z)=1+\frac{9}{16}\left[z+z^{-1}\right]-\frac{1}{16}\left[z^{3}+z^{-3}\right]$.
Following shows $f^{(k)}[n]$ for different values of k as well as $f^{(\infty)}(t)$.

Similar to part b, we have

$$
g^{(\infty)}(t)=\sum_{i=-\infty}^{\infty} g[i] f^{(\infty)}(i-t)
$$

Problem 2

Let L be the length of the input sequence i.e., $x[n]$ is restricted to $0 \leq n \leq L-1$. Therefore,

$$
\begin{aligned}
& y_{1}[0]=\frac{1}{\sqrt{2}}(x[0]-x[L-1]) \\
& y_{1}[n]=\frac{1}{\sqrt{2}}(x[n]-x[n-1]), \quad n=1,2, \cdots, L-1 \\
& y_{2}[0]=\frac{1}{\sqrt{2}}(x[0]+x[L-1]) \\
& y_{2}[n]=\frac{1}{\sqrt{2}}(x[n]+x[n-1]), \quad n=1,2, \cdots, L-1 .
\end{aligned}
$$

Energy at the input is

$$
E_{i p}=\sum_{n=0}^{L-1}(x[n])^{2}
$$

Case L is odd:

$$
\begin{gathered}
\bar{y}_{1}[n]= \begin{cases}\frac{1}{\sqrt{2}}(x[0]-x[L-1]), & n=0 \\
\frac{1}{\sqrt{2}}(x[2 n]-x[2 n-1]), & n=1, \cdots, \frac{L-1}{2}\end{cases} \\
\bar{y}_{2}[n]= \begin{cases}\frac{1}{\sqrt{2}}(x[0]+x[L-1]), & n=0 \\
\frac{1}{\sqrt{2}}(x[2 n]+x[2 n-1]), & n=1, \cdots, \frac{L-1}{2}\end{cases} \\
\Longrightarrow\left(\bar{y}_{1}[n]\right)^{2}+\left(\bar{y}_{2}[n]\right)^{2}= \begin{cases}(x[0])^{2}+(x[L-1])^{2}, & n=0 \\
(x[2 n])^{2}+(x[2 n-1])^{2}, & n=1, \cdots, \frac{L-1}{2}\end{cases}
\end{gathered}
$$

Energy at the output is

$$
\begin{aligned}
\sum_{n=0}^{\frac{L-1}{2}}\left(\left(\bar{y}_{1}[n]\right)^{2}+\left(\bar{y}_{2}[n]\right)^{2}\right) & =(x[0])^{2}+(x[L-1])^{2} \\
& +(x[2])^{2}+(x[1])^{2}+(x[4])^{2}+(x[3])^{2}+\cdots+(x[L-1])^{2}+(x[L-2])^{2} \\
& =(x[L-1])^{2}+\sum_{n=0}^{L-1}(x[n])^{2} \\
& >E_{i p} .
\end{aligned}
$$

Therefore the energy is not conserved.
Case L is even:

$$
\begin{aligned}
& \bar{y}_{1}[n]= \begin{cases}\frac{1}{\sqrt{2}}(x[0]-x[L-1]), & n=0 \\
\frac{1}{\sqrt{2}}(x[2 n]-x[2 n-1]), & n=1, \cdots, \frac{L-2}{2}\end{cases} \\
& \bar{y}_{2}[n]= \begin{cases}\frac{1}{\sqrt{2}}(x[0]+x[L-1]), & n=0 \\
\frac{1}{\sqrt{2}}(x[2 n]+x[2 n-1]), & n=1, \cdots, \frac{L-2}{2}\end{cases} \\
& \Longrightarrow\left(\bar{y}_{1}[n]\right)^{2}+\left(\bar{y}_{2}[n]\right)^{2}= \begin{cases}(x[0])^{2}+(x[L-1])^{2}, & n=0 \\
(x[2 n])^{2}+(x[2 n-1])^{2}, & n=1, \cdots, \frac{L-2}{2}\end{cases}
\end{aligned}
$$

Energy at the output is

$$
\begin{aligned}
\sum_{n=0}^{\frac{L-1}{2}}\left(\left(\bar{y}_{1}[n]\right)^{2}+\left(\bar{y}_{2}[n]\right)^{2}\right) & =(x[0])^{2}+(x[L-1])^{2} \\
& +(x[2])^{2}+(x[1])^{2}+(x[4])^{2}+(x[3])^{2}+\cdots+(x[L-2])^{2}+(x[L-3])^{2} \\
& =\sum_{n=0}^{L-1}(x[n])^{2} \\
& =E_{i p} .
\end{aligned}
$$

Therefore the energy is conserved.
When L is even, the input to the second stage is of length $\frac{L}{2}$. For the energy conservation in the second stage, $\frac{L}{2}$ must be even, i.e., L is a multiple of 2^{2}.

Extending it to k-stage wavelet filter bank, energy is conserved if L is a multiple of 2^{k}. If the input length is not multiple of 2^{k}, zeros can be padded to make the input length multiple of 2^{k}.

