E9-252: Mathematical Methods and Techniques in Signal Processing Homework 1 Solutions

Instructor: Prof. Shayan G. Srinivasa
Teaching Assistant: Chaitanya Kumar Matcha
Solutions prepared by: Shounak Roy and Chaitanya Kumar Matcha

28 September 2016
(P. P. Vaidyanathan, 3.1)
$H(z)$ is given to be a linear phase filter. To prove $G(z)$ a linear phase filter we just have to show $g(n)=g(N-n)$. We have,

$$
\begin{equation*}
g(n)=(-1)^{M} \delta(n-M)-(-1)^{n} h(n) \tag{1}
\end{equation*}
$$

with $M=\frac{N}{2}$.
(Part a) We have,

$$
\begin{align*}
g(N-n) & =(-1)^{M} \delta(N-n-M)-(-1)^{N-n} h(N-n), \\
& =(-1)^{M} \delta(M-n)-(-1)^{N-n} h(n),[\because h(n) \text { is a linear phase filter }] \tag{2}
\end{align*}
$$

Also we have, $\delta(M-n)=\delta(n-M)$. Thus, we get,

$$
g(N-n)=g(n)
$$

which proves $g(n)$ is a linear phase FIR filter.
(Part b) Using $h(n)=h(N-n)$, we have

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\sum_{n=0}^{\frac{N}{2}-1} h(n) e^{-j \omega n}+\sum_{n=\frac{N}{2}+1}^{N} h(n) e^{-j \omega n}+h\left(\frac{N}{2}\right) e^{-j \omega \frac{N}{2}} \\
&=\sum_{n=0}^{\frac{N}{2}-1} h(n) e^{-j \omega n}+\sum_{n^{\prime}=0}^{\frac{N}{2}-1} h\left(N-n^{\prime}\right) e^{-j \omega\left(N-n^{\prime}\right)}+h\left(\frac{N}{2}\right) e^{-j \omega \frac{N}{2}} \quad\left(n^{\prime}-N-n\right) \\
&=\sum_{n=0}^{\frac{N}{2}-1} h(n) e^{-j \omega n}+\sum_{n^{\prime}=0}^{\frac{N}{2}-1} h(n) e^{-j \omega(N-n)}+h\left(\frac{N}{2}\right) e^{-j \omega \frac{N}{2}} \\
&=\sum_{n=0}^{\frac{N}{2}-1} h(n)\left(e^{-j \omega n}+e^{-j \omega(N-n)}\right)+h\left(\frac{N}{2}\right) e^{-j \omega \frac{N}{2}} \\
&=e^{-j \omega \frac{N}{2}} \sum_{n=0}^{\frac{N}{2}-1} h(n)\left(e^{-j \omega\left(n-\frac{N}{2}\right)}+e^{j \omega\left(n-\frac{N}{2}\right)}\right)+h\left(\frac{N}{2}\right) e^{-j \omega \frac{N}{2}} \\
& H\left(e^{j \omega}\right)=e^{-j \omega \frac{N}{2}}\left[\begin{array}{l}
H_{R}(\omega) \text { real valued } \\
\left.\sum_{n=0}^{\frac{N}{2}-1} h(n) \cos \left(\omega\left(n-\frac{N}{2}\right)\right)+h\left(\frac{N}{2}\right)\right]
\end{array}\right. \\
& H\left(e^{j \omega}\right)=e^{-j \omega \frac{N}{2}} H_{r}(\omega)
\end{aligned}
$$

We have,

$$
\begin{align*}
& G\left(e^{j \omega}\right)=(-1)^{M} e^{-j \omega M}-H\left(-e^{j \omega}\right) \tag{3}\\
& G\left(e^{j \omega}\right)=(-1)^{\frac{N}{2}} e^{-j \omega \frac{N}{2}}-(-1)^{\frac{N}{2}} e^{-j \omega \frac{N}{2}} H_{R}(\omega+\pi) \tag{4}\\
& G\left(e^{j \omega}\right)=(-1)^{\frac{N}{2}} e^{-j \omega \frac{N}{2}}\left[1-H_{R}(\omega+\pi)\right] \tag{5}
\end{align*}
$$

The amplitude response of $H\left(e^{j \omega}\right)$ is given as follows

Figure 1: Amplitude response of $\left|H\left(e^{j \omega}\right)\right|$

Thus, the amplitude response is,

$$
\begin{equation*}
\left|G\left(e^{j \omega}\right)\right|=\left|1-H_{R}(\omega+\pi)\right| \tag{6}
\end{equation*}
$$

Figure 2: Plots

(P. P. Vaidyanathan, 3.13)

(Part a)

For real θ it is clear that $e^{ \pm \theta}$ is real. The geometric mean of e^{θ} and $e^{-\theta}$ is 1 . With the property that arithmetic mean is equal to or greater than the geometric mean, we have

$$
\begin{equation*}
x=\frac{e^{\theta}+e^{-\theta}}{2} \geq 1 \tag{7}
\end{equation*}
$$

Now we assume θ is complex. Let $\theta=a+i b$. Thus we have,

$$
\begin{align*}
\frac{e^{\theta}+e^{-\theta}}{2} & =\frac{e^{a+i b}+e^{-a-i b}}{2} \\
& =\frac{e^{a}(\cos b+i \sin b)+e^{-a}(\cos b-i \sin b)}{2} \\
& =\frac{\cos b \times\left(e^{a}+e^{-a}\right)+i \sin b \times\left(e^{a}-e^{-a}\right)}{2} \tag{8}
\end{align*}
$$

For the above equation to have a real value either $b=0$ or $\left(e^{a}-e^{-a}\right)=0$. Clearly the former is not true, then θ will be real. Thus, taking the latter as true we have

$$
\begin{align*}
\left(e^{a}-e^{-a}\right) & =0 \\
\text { or } a & =0 . \tag{9}
\end{align*}
$$

Thus, $\theta=i b$. To make x have a value in $[-1,1] a=0$ and $b=j \omega$. With $\theta=j \omega$ we have,

$$
\begin{aligned}
x & =\frac{e^{j \omega}+e^{-j \omega}}{2} \\
& =\cos \omega
\end{aligned}
$$

Thus, $-1 \leq x \leq 1$.
(Part b)

$$
\begin{align*}
\text { R.H.S } & =\cosh (N \theta) \cosh \theta \pm \sinh (N \theta) \sinh \theta \\
& =\frac{\left(e^{N \theta}+e^{-N \theta}\right)\left(e^{\theta}+e^{-\theta}\right) \pm\left(e^{N \theta}-e^{-N \theta}\right)\left(e^{\theta}-e^{-\theta}\right)}{4} \tag{10}
\end{align*}
$$

Taking just the addition ${ }^{\prime}+$ ' first, (subtraction can be also check similarly)

$$
\begin{align*}
\text { R.H.S } & =\frac{e^{(N+1) \theta}+e^{\theta(1-N)}+e^{(N-1) \theta}+e^{-\theta(N+1)}+e^{(N+1) \theta}-e^{\theta(1-N)}-e^{(N-1) \theta}+e^{-\theta(N+1)}}{4} \\
& =\frac{2\left(e^{(N+1) \theta}+e^{-\theta(N+1)}\right)}{4} \\
& =\frac{e^{(N+1) \theta}+e^{-\theta(N+1)}}{2} \\
& =\cosh ((N+1) \theta) \\
& =\text { L.H.S. } \tag{11}
\end{align*}
$$

The second part of this question is as follows, We have,

$$
\begin{align*}
C_{N}(x) & =\cosh (N \theta) \\
& =\frac{\left(e^{N \theta}+e^{-N \theta}\right)}{2} \tag{12}
\end{align*}
$$

Thus,

$$
\begin{align*}
2 x C_{N}(x)-C_{N-1}(x) & =2 x \cosh (N \theta)-\cosh ((N-1) \theta) \\
& =2 x \frac{e^{N \theta}+e^{-\theta N}}{2}-\frac{e^{(N-1) \theta}+e^{-\theta(N-1)}}{2} \\
& =2\left(\frac{e^{\theta}+e^{-\theta}}{2}\right) \frac{e^{N \theta}+e^{-\theta N}}{2}-\frac{e^{(N-1) \theta}+e^{-\theta(N-1)}}{2} \\
& =\frac{e^{\theta(N+1)}+e^{\theta(N-1)}+e^{\theta(1-N)}+e^{-\theta(1+N)}-e^{(N-1) \theta}-e^{-\theta(N-1)}}{2} \\
& =\frac{e^{\theta(N+1)}+e^{-\theta(N+1)}}{2} \\
& =\cosh ((N+1) \theta) \\
& =C_{N+1}(x) . \tag{13}
\end{align*}
$$

Thus, we have proved

$$
\begin{equation*}
C_{N+1}(x)=2 x C_{N}(x)-C_{N-1}(x) \tag{14}
\end{equation*}
$$

(Part b)

We have,

$$
\begin{align*}
& \quad C_{0}(x)=1 \tag{15}\\
C_{1}(x)= & x \tag{16}\\
C_{2}(x)= & 2 x C_{1}(x)-C_{0}(x) \\
= & 2 x^{2}-1 \tag{17}\\
C_{3}(x)= & 2 x C_{2}(x)-C_{1}(x) \\
= & 2 x\left(2 x^{2}-1\right)-x \\
= & 4 x^{3}-3 x \tag{18}\\
C_{4}(x)= & 2 x C_{3}(x)-C_{2}(x) \\
= & 2 x\left(4 x^{3}-3 x\right)-2 x^{2}+1 \\
= & 8 x^{4}-8 x^{2}+1 \tag{19}\\
C_{5}(x)= & 2 x C_{4}(x)-C_{3}(x) \tag{20}\\
= & 2 x\left(8 x^{4}-8 x^{2}+1\right)-4 x^{3}+3 x \tag{21}\\
= & 16 x^{5}-20 x^{3}+5 x . \tag{22}
\end{align*}
$$

Figure 3: Plots of $C_{N}(x)$

(Part d)

$$
\begin{equation*}
C_{N}(x)=2 x C_{N-1}(x)-C_{N-2}(x) \tag{23}
\end{equation*}
$$

For,

$$
\begin{aligned}
& C_{0}(x)=1 \text { [the required condition is true] } \\
& C_{1}(x)=x[\text { the required condition is true] }
\end{aligned}
$$

We also assume the required condition is true for $0,1,2, \ldots, N-1$.
Case 1: When N is even.
$C_{N-1}(x)$ has odd powers, so $x C_{N-1}(x)$ has even powers. $C_{N-2}(x)$ also has even powers. Thus, C_{N} also has even powers.

Case 2: When N is odd.
$C_{N-1}(x)$ has even powers, so $x C_{N-1}(x)$ has odd powers. $C_{N-2}(x)$ also has odd powers. Thus, C_{N} also has odd powers.

Thus, our required condition is true for any N.

$$
\begin{align*}
C_{N}(1) & =\cosh \left(N \cosh ^{-1} 1\right) \\
& =\cosh (N \times 0) \\
& =1 \tag{24}
\end{align*}
$$

We have,

$$
\begin{aligned}
C_{N}(x) & =2 x C_{N-1}(x)-C_{N-2}(x) \\
& =2^{2} x^{2} C_{N-2}(x)-4 x C_{N-3}-C_{N-4}(x)
\end{aligned}
$$

The first term R.H.S has the form of 2^{k} for the term $C_{N-k}(x)$. The first term is $C_{N-1}(x)$ for the polynomial $C_{N}(x)$ which implies that the corresponding coefficient is 2^{N-1}.

(Part e)

We have,

$$
\begin{aligned}
C_{N}(x) & =0 \\
\text { or, } \cosh (N \theta) & =0
\end{aligned}
$$

This means,

$$
\begin{aligned}
N \theta & =j k \pi \\
\text { or, } \theta & =\frac{j k \pi}{N}
\end{aligned}
$$

Now,

$$
\cosh (N \theta)=\cosh \left(N \cosh ^{-1} x\right)=0
$$

Thus,

$$
\begin{aligned}
\cosh ^{-1} x & =j \frac{k \pi}{N} \\
\text { or, } x & =\cosh \left(j \frac{k \pi}{N}\right) \\
& =\cos \left(\frac{k \pi}{N}\right)
\end{aligned}
$$

which proves $-1 \leq x \leq 1$.

(P. P. Vaidyanathan, 4.7)

For $0 \leq k \leq M-1$ the two sets are,

$$
S=\left\{W^{0}, W^{1}, \ldots, W^{M-1}\right\} \text { and } S_{L}=\left\{W^{0}, W^{L}, \ldots, W^{L(M-1)}\right\}
$$

Necessary condition: Let us take k_{1} and k_{2} such that $0 \leq k_{1}<k_{2} \leq M-1$. Thus, $S=S_{L}$ for some k_{1} and k_{2} such that $0 \leq k_{1}<k_{2} \leq M-1$ with the condition

$$
\begin{aligned}
k_{1} L \bmod M & =k_{2} L \bmod M \\
\text { or, }\left(k_{1}-k_{2}\right) L \bmod M & =0 .
\end{aligned}
$$

Since, $k_{2}-k_{1} \neq 0$ and $k_{1}-k_{2} \leq M-1$, thus, M does not divide $k_{2}-k_{1}$. Therefore, $\left(k_{1}-\right.$ $\left.k_{2}\right) L \bmod \mathrm{~N}=0$ holds true only for some factor (not equal to 1) of M divides L, which implies g.c.d $(M, L)=1$. Thus, M and L are relatively prime.

Sufficient condition:

Let g.c.d $(M, L)=1$. Since $0 \leq k_{1}<k_{2} \leq M-1$ for all $k_{2} \neq k_{1}, M$ does not divide $\left(k_{2}-k_{1}\right)$. Which means, M also does not divide $\left(k_{2}-k_{1}\right) \times L$ as g.c.d $(M, L)=1$. Therefore,

$$
\left(k_{1}-k_{2}\right) L \bmod M \neq 0 .
$$

Which means,

$$
k_{1} L \bmod M \neq k_{2} L \bmod M
$$

Hence, the elements $k L \bmod M$ are all unique for $0 \leq k \leq M-1$. Therefore the set $S=S_{L}$.

(P. P. Vaidyanathan, 4.8)

(Part a)

We are given for figure (a)

$$
y_{1}(n)= \begin{cases}x\left(\frac{M n}{L}\right) & \text { where, } n=\text { multiple of } L \tag{25}\\ 0 & \text { otherwise }\end{cases}
$$

For figure (b) let us consider $x_{2}(n)$ to be the function after the upsampler L. Thus,

$$
x_{2}(n)= \begin{cases}x\left(\frac{n}{L}\right) & \text { where, } n=\text { multiple of } L \tag{26}\\ 0 & \text { otherwise }\end{cases}
$$

Finally we obtain

$$
y_{2}(n)= \begin{cases}x\left(\frac{M n}{L}\right) & \text { where, } M n=\text { multiple of } L \tag{27}\\ 0 & \text { otherwise }\end{cases}
$$

(Part a)
We apply z-transform on both $y_{1}(n)$ and $y_{2}(n)$,

$$
\begin{equation*}
Y_{1}(z)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(z^{\frac{L}{M}} W^{k}\right) \tag{28}
\end{equation*}
$$

and,

$$
\begin{equation*}
Y_{2}(z)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(z^{\frac{L}{M}} W^{k L}\right) \tag{29}
\end{equation*}
$$

The difference between $Y_{1}(z)$ and $Y_{2}(z)$ is clearly in the powers of W. The first one is W^{k} and the second one is $W^{k L}$. In order for them to be equal L and M has to be relatively prime. The explanation is already given in problem 4.7.
(P. P. Vaidyanathan, 4.10)

We have,

$$
\begin{equation*}
x(n)=x(n+N) \tag{30}
\end{equation*}
$$

$y(n)$ is a M-fold decimated version of $x(n)$. Thus,

$$
\begin{align*}
y(n) & =x(M n) \tag{31}\\
& =x(M n+N) \tag{32}
\end{align*}
$$

Now,

$$
\begin{equation*}
y(n+L)=x(M n+M L-k N) \tag{33}
\end{equation*}
$$

Here k is an integer, which means we are taking the $k^{t h}$ period of the function. In order to show, $y(n+L)=y(n)$, it is good enough to show $y(n+L)=x(M n)$. Thus, this condition forces us to make

$$
\begin{equation*}
M L-k N=0 \tag{34}
\end{equation*}
$$

which is,

$$
\begin{equation*}
k=\frac{M L}{N} \tag{35}
\end{equation*}
$$

Thus, we can easily choose a integer k for which $L<\infty$. We also have,

$$
\begin{equation*}
L=\frac{k N}{M} \tag{36}
\end{equation*}
$$

In order to find the smallest L, we have to find smallest $k N$ such that $k N$ is divisible by $M . k N$ is trivially divisible by N. Therefore the smallest $k N$ is

$$
\begin{aligned}
k N & =\operatorname{LCM}(M, N) \\
\Longrightarrow k & =\frac{\operatorname{LCM}(M, N)}{N} \\
\Longrightarrow L & =\frac{k N}{M}=\frac{\operatorname{LCM}(M, N)}{M}
\end{aligned}
$$

(P. P. Vaidyanathan, 4.15)

The filter $H(z)$ can be decomposed into polyphase form as

$$
H(z)=R_{0}\left(z^{3}\right)+z^{-1} R_{1}\left(z^{3}\right)+z^{-2} R_{2}\left(z^{3}\right)
$$

The polyphase components $R_{0}(z), R_{1}(z)$ and $R_{2}(z)$ can be further decomposed as

$$
R_{i}(z)=R_{i 0}\left(z^{4}\right)+z^{-1} R_{i 1}\left(z^{4}\right)+z^{-2} R_{i 2}\left(z^{4}\right)+z^{-3} R_{i 3}\left(z^{4}\right), \quad i=0,1,2
$$

Using the above polyphase decompositions, the given fractional decimation filter can be efficiently implemented as
(Part a) If the filter is implemented directly, the sample rate of the signals $x_{1}[n], x_{2}[n]$ at the input and output of $H(z)$ is $L \times 100 \mathrm{KHz}=300 \mathrm{KHz}$. Therefore, the implementation of $H(z)$ must perform 60 multiplications per $\frac{1}{3} \times 10^{-5}$ seconds. If the multiplications are performed parallely, each multiplier has $\frac{1}{3} \times 10^{-5} \approx 3.33 \mu s$. If the multiplications are performed serially, each multiplier has $\frac{1}{60} \times \frac{1}{3} \times 10^{-5} \approx 55.56 \mathrm{~ns}$.
(Part b) If the filter is implemented in efficient way using polyphase decomposition, sample rates at the input and output of the filters $R_{i j}(z)$ is $\frac{1}{M} \times 100 \mathrm{KHz}=25 \mathrm{KHz}$. If the multiplications are performed parallely, each multiplier has $\frac{1}{25} \times 10^{-3}=40 \mu s$.
(Part c) In the polyphase decomposition, the 60 coefficients of $H(z)$ are split across various polyphase components $R_{i, j}(z)$. Since, each $R_{i j}(z)$ operates at 25 KHz , the total number of multiplications performed per second $=60 \times 25 \times 10^{3}=1.5 \times 10^{6}$.

If $l_{i j}$ are the number of coefficients in $R_{i j}(z)$, then the number of additions required for one output sample is $l_{i j}-1$. We also know that $\sum_{i=0}^{2} \sum_{j=0}^{3} l_{i j}=60$. We also perform 9 additions/sample at the output of $R_{i j}(z) \mathrm{s}$. Therefore, the total number of additions performed per second $=25 \times 10^{3} \times$ $\left(\sum_{i=0}^{2} \sum_{j=0}^{3}\left(l_{i j}-1\right)+9\right)=25 \times 10^{3} \times(60-12+9)=1.425 \times 10^{6}$.

The additions after upsampling by 3 can be avoided because only one out of the three samples to be added will be non-zero. Therefore, these additions are not counted.

(P. P. Vaidyanathan, 4.16)

The given statement is not true.
We justify it with a counter example.
We have,

$$
\begin{equation*}
g(n)=h(2 n) \tag{37}
\end{equation*}
$$

Choose a all pass $G(z)$

$$
G(z)=g_{0}+g_{1} z^{-1}+\ldots
$$

with

$$
\left|G\left(e^{j \omega}\right)\right|=1
$$

In order to satisfy our given equation we can choose $H(z)$ as follows,

$$
\begin{aligned}
H(z) & =g_{0}+0 . z^{-1}+g_{1} z^{-2}+0 . z^{-3}+\ldots \\
& =G\left(z^{2}\right) \\
\Longrightarrow H\left(e^{j \omega}\right) & =G\left(e^{2 j \omega}\right) \\
\Longrightarrow\left|H\left(e^{j \omega}\right)\right| & =\left|G\left(e^{2 j \omega}\right)\right|=1
\end{aligned}
$$

Therefore, $H(z)$ is an all pass filter.
We have shown a counter example where $H(z)$ is an all pass filter and $g(n)=h(2 n)$ is also an all pass filter and $H(z)$ is not an impluse function.

(P. P. Vaidyanathan, 4.21)

$$
\begin{aligned}
H_{0}(z) & =1+2 z^{-1}+4 z^{-2}+2 z^{-3}+z^{-4} \\
& =\left(1+4 z^{-2}+z^{-4}\right)+z^{-1}\left(2+2 z^{-2}\right) \\
H_{1}(z)=H_{0}(-z) & =\left(1+4 z^{-2}+z^{-4}\right)-z^{-1}\left(2+2 z^{-2}\right)
\end{aligned}
$$

The polyphase components are

$$
\begin{aligned}
& E_{0}\left(z^{2}\right)=1+4 z^{-2}+z^{-4} \\
& E_{0}\left(z^{2}\right)=2+2 z^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& X_{0}(z)=H_{0}(z) X(z)=\left[\left(1+4 z^{-2}+z^{-4}\right)+z^{-1}\left(2+2 z^{-2}\right)\right] X(z) \\
& X_{1}(z)=H_{1}(z) X(z)=\left[\left(1+4 z^{-2}+z^{-4}\right)-z^{-1}\left(2+2 z^{-2}\right)\right] X(z)
\end{aligned}
$$

In matrix form,

$$
\left[\begin{array}{l}
X_{0}(z) \\
X_{1}(z)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]}_{2 \times 2 \text { IDFT Matrix }}\left[\begin{array}{c}
\left(1+4 z^{-2}+z^{-4}\right) \\
z^{-1}\left(2+2 z^{-2}\right)
\end{array}\right] X(z)
$$

The implementation is given in the figure below.

(P. P. Vaidyanathan, 4.27)

$$
\begin{gathered}
H_{0}(z)=\sum_{i=0}^{N} h_{0}(i) z^{-i} \\
H_{k}(z)=H\left(z W^{k}\right)=\sum_{i=0}^{N} h_{0}(i)\left(z W^{k}\right)^{-i}=\sum_{i=0}^{N} h_{0}(i) W^{-i k} z^{-i} \\
\Longrightarrow h_{k}(i)=h_{0}(i) W^{-i k}, \quad i=0, \cdots N ; \quad k=0,1,2,3,4
\end{gathered}
$$

(Part a) If $h_{1}(1)=h_{0}(1) W^{-1}$. Since $h_{0}(1)$ is real and $W^{-1}=e^{-\frac{j 2 \pi}{5}}$ is complex, $h_{1}(1)$ is complex. Therefore, $h_{k}(n), 1 \leq k \leq 4$ are not all real for all n.
(Part b)

$$
\begin{aligned}
& G_{1}(z)=H_{1}(z)+H_{4}(z) \\
&=\sum_{i=0}^{N} h_{0}(i) W^{-i} z^{-i}+\sum_{i=0}^{N} h_{0}(i) W^{-4 i} z^{-i} \\
&=\sum_{i=0}^{N} h_{0}(i)\left(W^{-i}+W^{-4 i}\right) z^{-i} \\
&=\sum_{i=0}^{N} h_{0}(i)\left(W^{-i}+W^{i}\right) z^{-i} \quad\left(W^{5}=1 \Longrightarrow W^{-4 i}=W^{5 i-4 i}\right) \\
&=\sum_{i=0}^{N} h_{0}(i)\left(e^{-j \frac{2 i \pi}{5}}+e^{j \frac{2 i \pi}{5}}\right) z^{-i} \\
& \Longrightarrow g_{1}(z)=\sum_{i=0}^{N} h_{0}(i) \cos \left(\frac{2 i \pi}{5}\right) z^{-i} \\
&=h_{0}(n) \cos \left(\frac{2 \pi}{5} n\right) \\
& G_{2}(z)=H_{2}(z)+H_{3}(z) \\
&=\sum_{i=0}^{N} h_{0}(i) W^{-2 i} z^{-i}+\sum_{i=0}^{N} h_{0}(i) W^{-3 i} z^{-i} \\
&=\sum_{i=0}^{N} h_{0}(i)\left(W^{-2 i}+W^{-3 i}\right) z^{-i} \\
&=\sum_{i=0}^{N} h_{0}(i)\left(W^{-2 i}+W^{2 i}\right) z^{-i} \quad\left(W^{5}=1 \Longrightarrow W^{-3 i}=W^{5 i-4 i}\right) \\
&=\sum_{i=0}^{N} h_{0}(i)\left(e^{-j \frac{4 i \pi}{5}}+e^{j \frac{4 i \pi}{5}}\right) z^{-i} \\
& G_{2}(z)=\sum_{i=0}^{N} h_{0}(i) \cos \left(\frac{4 i \pi}{5}\right) z^{-i} \\
& g_{2}(n)=h_{0}(n) \cos \left(\frac{4 \pi}{5} n\right) \\
& \hline
\end{aligned}
$$

Therefore, $g_{1}(n)$ and $g_{2}(n)$ are all real.
(Part c)
$\left|G_{2}\left(e^{j \omega}\right)\right|$ need not necessarily look 'good' in the pass band. However, if the phase responses of $H_{2}\left(e^{j \omega}\right)$ and $H_{3}\left(e^{j \omega}\right)$ are equal in the overlapping regions, the magnitude response $\left|G_{2}\left(e^{j \omega}\right)\right|$ will be constant in the pass band.

(P. P. Vaidyanathan, 4.28)

Writing the polyphase decomposition of $H_{0}(z)$:

$$
\begin{aligned}
H_{0}(z) & =E_{0}\left(z^{2}\right)+z^{-1} E_{1}\left(z^{2}\right) \\
H_{1}(z)=H_{0}(-z) & =E_{0}\left(z^{2}\right)-z^{-1} E_{1}\left(z^{2}\right)
\end{aligned}
$$

From the figure, the output signal is

$$
\begin{aligned}
\hat{X}(z) & =\left(F_{0}(z) H_{0}(z)+F_{1}(z) H_{1}(z)\right) X(z) \\
\Longrightarrow \frac{\hat{X}(z)}{X(z)} & =E_{0}\left(z^{2}\right)\left(F_{0}(z)+F_{1}(z)\right)+z^{-1} E_{1}\left(z^{2}\right)\left(F_{0}(z)-F_{1}(z)\right) .
\end{aligned}
$$

(Part a)

$$
\begin{aligned}
H_{0}(z) & =1+3 z^{-1}+0.5 z^{-2}+z^{-3} \\
\Longrightarrow E_{0}\left(z^{2}\right) & =1+0.5 z^{-2} \\
z^{-1} E_{1}\left(z^{2}\right) & =3 z^{-1}+z^{-3} \\
\frac{\hat{X}(z)}{X(z)}=\left(1+0.5 z^{-2}\right)\left(F_{0}(z)\right. & \left.+F_{1}(z)\right)+\left(3 z^{-1}+z^{-3}\right)\left(F_{0}(z)-F_{1}(z)\right)
\end{aligned}
$$

We can choose $F_{0}(z)=F_{1}(z)=\frac{1}{2\left(1+0.5 z^{-2}\right)} \Longrightarrow \frac{\hat{X}(z)}{X(z)}=1$. Note that $F_{0}(z)$ and $F_{1}(z)$ are causal and stable because the poles are located at $\pm j \frac{1}{\sqrt{2}}$ (inside unit circle).
(Part b)

$$
\begin{gathered}
H_{0}(z)=1+2 z^{-1}+3 z^{-2}+2 z^{-3}+z^{-4} \\
\Longrightarrow E_{0}\left(z^{2}\right)=1+3 z^{-2}+z^{-4} \\
z^{-1} E_{1}\left(z^{2}\right)=2\left(z^{-1}+z^{-3}\right) \\
\frac{\hat{X}(z)}{X(z)}=\left(1+3 z^{-2}+z^{-4}\right)\left(F_{0}(z)+F_{1}(z)\right)+2\left(z^{-1}+z^{-3}\right)\left(F_{0}(z)-F_{1}(z)\right) \\
=\left(\left(1+z^{-2}\right)^{2}+z^{-2}\right)\left(F_{0}(z)+F_{1}(z)\right)+2 z^{-1}\left(1+z^{-2}\right)\left(F_{0}(z)-F_{1}(z)\right)
\end{gathered}
$$

Choose

$$
\begin{gathered}
F_{0}(z)+F_{1}(z)=z^{-1} \\
F_{0}(z)-F_{1}(z)=-\frac{1}{2}\left(1+z^{-2}\right) \\
\Longrightarrow \frac{\hat{X}(z)}{X(z)}=z^{-1}\left(1+z^{-2}\right)^{2}+z^{-3}-z^{-1}\left(1+z^{-2}\right)^{2} \\
=z^{-3}
\end{gathered}
$$

Therefore, perfect reconstruction is possible with following causal FIR filters:

$$
\begin{aligned}
& F_{0}(z)=\frac{1}{4}\left(-1+z^{-2}\right) \\
& F_{1}(z)=\frac{1}{4}\left(1+3 z^{-2}\right)
\end{aligned}
$$

