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(P. P. Vaidyanathan, 3.1)
H(z) is given to be a linear phase filter. To prove G(z) a linear phase filter we just have to show

g(n) = g(N − n). We have,

g(n) = (−1)Mδ(n−M)− (−1)nh(n), (1)

with M = N
2 .

(Part a) We have,

g(N − n) = (−1)Mδ(N − n−M)− (−1)N−nh(N − n),
= (−1)Mδ(M − n)− (−1)N−nh(n), [∵ h(n) is a linear phase filter] (2)

Also we have, δ(M − n) = δ(n−M). Thus, we get,

g(N − n) = g(n),

which proves g(n) is a linear phase FIR filter.
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(Part b) Using h (n) = h (N − n), we have

H
(
ejω
)
=

N
2 −1∑
n=0

h (n) e−jωn +

N∑
n=N

2 +1

h (n) e−jωn + h

(
N

2

)
e−jω

N
2

=

N
2 −1∑
n=0

h (n) e−jωn +

N
2 −1∑
n′=0

h (N − n′) e−jω(N−n′) + h

(
N

2

)
e−jω

N
2 (n′ −N − n)

=

N
2 −1∑
n=0

h (n) e−jωn +

N
2 −1∑
n′=0

h (n) e−jω(N−n) + h

(
N

2

)
e−jω

N
2

=

N
2 −1∑
n=0

h (n)
(
e−jωn + e−jω(N−n)

)
+ h

(
N

2

)
e−jω

N
2

= e−jω
N
2

N
2 −1∑
n=0

h (n)
(
e−jω(n−

N
2 ) + ejω(n−

N
2 )
)
+ h

(
N

2

)
e−jω

N
2

H
(
ejω
)
= e−jω

N
2

2 N
2 −1∑
n=0

h (n) cos

(
ω

(
n− N

2

))
+ h

(
N

2

)
︸ ︷︷ ︸

HR(ω) real valued

H
(
ejω
)
= e−jω

N
2 Hr (ω)

=⇒ H
(
−ejω

)
= (−1)N2 e−jωN2 HR (ω + π)

We have,

G
(
ejω
)
= (−1)Me−jωM −H

(
−ejω

)
. (3)

G
(
ejω
)
= (−1)N2 e−jωN2 − (−1)N2 e−jωN2 HR (ω + π) (4)

G
(
ejω
)
= (−1)N2 e−jωN2 [1−HR (ω + π)] . (5)

The amplitude response of H(ejω) is given as follows

Figure 1: Amplitude response of |H(ejω)|

Thus, the amplitude response is,
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|G
(
ejω
)
| = |1−HR (ω + π) | (6)

(a) Amplitude response of |H
(
e−(jω+π)

)
| (b) Amplitude response of |G

(
ejω

)
|

Figure 2: Plots
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(P. P. Vaidyanathan, 3.13)

(Part a)

For real θ it is clear that e±θ is real. The geometric mean of eθ and e−θ is 1. With the property that
arithmetic mean is equal to or greater than the geometric mean, we have

x =
eθ + e−θ

2
≥ 1 (7)

Now we assume θ is complex. Let θ = a+ ib. Thus we have,

eθ + e−θ

2
=
ea+ib + e−a−ib

2

=
ea (cos b+ isin b) + e−a (cos b− isin b)

2

=
cos b× (ea + e−a) + isin b× (ea − e−a)

2
(8)

For the above equation to have a real value either b = 0 or (ea − e−a) = 0. Clearly the former is
not true, then θ will be real. Thus, taking the latter as true we have

(ea − e−a) = 0

or a = 0. (9)

Thus, θ = ib. To make x have a value in [−1, 1] a = 0 and b = jω. With θ = jω we have,

x =
ejω + e−jω

2
= cos ω

Thus, −1 ≤ x ≤ 1.

(Part b)

R.H.S = cosh(Nθ) cosh θ ± sinh(Nθ) sinh θ

=

(
eNθ + e−Nθ

) (
eθ + e−θ

)
±
(
eNθ − e−Nθ

) (
eθ − e−θ

)
4

(10)

Taking just the addition ′+′ first, (subtraction can be also check similarly)

R.H.S =
e(N+1)θ + eθ(1−N) + e(N−1)θ + e−θ(N+1) + e(N+1)θ − eθ(1−N) − e(N−1)θ + e−θ(N+1)

4

=
2
(
e(N+1)θ + e−θ(N+1)

)
4

=
e(N+1)θ + e−θ(N+1)

2
= cosh ((N + 1) θ)

= L.H.S. (11)

The second part of this question is as follows,
We have,
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CN (x) = cosh(Nθ)

=

(
eNθ + e−Nθ

)
2

(12)

Thus,

2xCN (x)− CN−1(x) = 2x cosh(Nθ)− cosh((N − 1)θ)

= 2x
eNθ + e−θN

2
− e(N−1)θ + e−θ(N−1)

2

= 2

(
eθ + e−θ

2

)
eNθ + e−θN

2
− e(N−1)θ + e−θ(N−1)

2

=
eθ(N+1) + eθ(N−1) + eθ(1−N) + e−θ(1+N) − e(N−1)θ − e−θ(N−1)

2

=
eθ(N+1) + e−θ(N+1)

2
= cosh((N + 1)θ)

= CN+1(x). (13)

Thus, we have proved

CN+1(x) = 2xCN (x)− CN−1(x) (14)

(Part b)

We have,

C0(x) = 1 (15)

C1(x) = x (16)
C2(x) = 2xC1(x)− C0(x)

= 2x2 − 1 (17)
C3(x) = 2xC2(x)− C1(x)

= 2x(2x2 − 1)− x
= 4x3 − 3x (18)

C4(x) = 2xC3(x)− C2(x)

= 2x(4x3 − 3x)− 2x2 + 1

= 8x4 − 8x2 + 1 (19)
C5(x) = 2xC4(x)− C3(x) (20)

= 2x(8x4 − 8x2 + 1)− 4x3 + 3x (21)

= 16x5 − 20x3 + 5x. (22)
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Figure 3: Plots of CN (x)

(Part d)

CN (x) = 2xCN−1(x)− CN−2(x) (23)

For,

C0(x) = 1 [the required condition is true]
C1(x) = x [the required condition is true]

We also assume the required condition is true for 0, 1, 2, ..., N − 1.
Case 1: When N is even.
CN−1(x) has odd powers, so xCN−1(x) has even powers. CN−2(x) also has even powers. Thus,

CN also has even powers.
Case 2: When N is odd.
CN−1(x) has even powers, so xCN−1(x) has odd powers. CN−2(x) also has odd powers. Thus, CN

also has odd powers.
Thus, our required condition is true for any N.

CN (1) = cosh(N cosh−1 1)

= cosh(N × 0)

= 1. (24)

We have,

CN (x) = 2xCN−1(x)− CN−2(x)
= 22x2CN−2(x)− 4xCN−3 − CN−4(x)

The first term R.H.S has the form of 2k for the term CN−k(x). The first term is CN−1(x) for the
polynomial CN (x) which implies that the corresponding coefficient is 2N−1.
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(Part e)

We have,

CN (x) = 0

or, cosh(Nθ) = 0

This means,

Nθ = jkπ

or, θ =
jkπ

N

Now,

cosh(Nθ) = cosh(N cosh−1 x) = 0

Thus,

cosh−1 x = j
kπ

N

or, x = cosh

(
j
kπ

N

)
= cos

(
kπ

N

)
which proves −1 ≤ x ≤ 1.
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(P. P. Vaidyanathan, 4.7)
For 0 ≤ k ≤M − 1 the two sets are,

S =
{
W 0,W 1, ...,WM−1} and SL =

{
W 0,WL, ...,WL(M−1)

}
Necessary condition: Let us take k1 and k2 such that 0 ≤ k1 < k2 ≤ M − 1. Thus, S = SL for

some k1 and k2 such that 0 ≤ k1 < k2 ≤M − 1 with the condition

k1L mod M = k2L mod M
or, (k1 − k2)L mod M = 0.

Since, k2 − k1 6= 0 and k1 − k2 ≤ M − 1, thus, M does not divide k2 − k1. Therefore, (k1 −
k2)L mod N = 0 holds true only for some factor (not equal to 1) of M divides L, which implies
g.c.d(M,L) = 1. Thus, M and L are relatively prime.

Sufficient condition:
Let g.c.d(M,L) = 1. Since 0 ≤ k1 < k2 ≤ M − 1 for all k2 6= k1, M does not divide (k2 − k1).

Which means, M also does not divide (k2 − k1)× L as g.c.d(M,L) = 1. Therefore,

(k1 − k2)L mod M 6= 0.

Which means,

k1L mod M 6= k2L mod M

Hence, the elements kL mod M are all unique for 0 ≤ k ≤M − 1. Therefore the set S = SL.
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(P. P. Vaidyanathan, 4.8)

(Part a)

We are given for figure (a)

y1(n) =

{
x
(
Mn
L

)
where, n = multiple of L.

0 otherwise
(25)

For figure (b) let us consider x2(n) to be the function after the upsampler L. Thus,

x2(n) =

{
x
(
n
L

)
where, n = multiple of L.

0 otherwise.
(26)

Finally we obtain

y2(n) =

{
x
(
Mn
L

)
where, Mn = multiple of L.

0 otherwise
(27)

(Part a)

We apply z-transform on both y1(n) and y2(n),

Y1(z) =
1

M

M−1∑
k=0

X
(
z
L
MW k

)
(28)

and,

Y2(z) =
1

M

M−1∑
k=0

X
(
z
L
MW kL

)
(29)

The difference between Y1(z) and Y2(z) is clearly in the powers of W . The first one is W k and the
second one isW kL. In order for them to be equal L andM has to be relatively prime. The explanation
is already given in problem 4.7.
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(P. P. Vaidyanathan, 4.10)
We have,

x(n) = x(n+N) (30)

y(n) is a M−fold decimated version of x(n). Thus,

y(n) = x(Mn) (31)
= x(Mn+N) (32)

Now,

y(n+ L) = x(Mn+ML− kN) (33)

Here k is an integer, which means we are taking the kth period of the function. In order to show,
y(n+L) = y(n), it is good enough to show y(n+L) = x(Mn). Thus, this condition forces us to make

ML− kN = 0 (34)

which is,

k =
ML

N
(35)

Thus, we can easily choose a integer k for which L <∞. We also have,

L =
kN

M
(36)

In order to find the smallest L, we have to find smallest kN such that kN is divisible by M . kN
is trivially divisible by N . Therefore the smallest kN is

kN = LCM(M,N)

=⇒ k =
LCM(M,N)

N

=⇒ L =
kN

M
=

LCM(M,N)

M
.
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(P. P. Vaidyanathan, 4.15)
The filter H (z) can be decomposed into polyphase form as

H (z) = R0

(
z3
)
+ z−1R1

(
z3
)
+ z−2R2

(
z3
)
.

The polyphase components R0 (z), R1 (z) and R2 (z) can be further decomposed as

Ri (z) = Ri0
(
z4
)
+ z−1Ri1

(
z4
)
+ z−2Ri2

(
z4
)
+ z−3Ri3

(
z4
)
, i = 0, 1, 2.

Using the above polyphase decompositions, the given fractional decimation filter can be efficiently
implemented as

(Part a) If the filter is implemented directly, the sample rate of the signals x1 [n], x2 [n] at the
input and output of H (z) is L×100 KHz= 300 KHz. Therefore, the implementation of H (z) must
perform 60 multiplications per 1

3 × 10−5 seconds. If the multiplications are performed parallely, each
multiplier has 1

3 × 10−5 ≈ 3.33µs. If the multiplications are performed serially, each multiplier has
1
60 × 1

3 × 10−5 ≈ 55.56ns.
(Part b) If the filter is implemented in efficient way using polyphase decomposition, sample rates

at the input and output of the filters Rij (z) is 1
M × 100 KHz= 25 KHz. If the multiplications are

performed parallely, each multiplier has 1
25 × 10−3 = 40µs.

(Part c) In the polyphase decomposition, the 60 coefficients of H (z) are split across various
polyphase components Ri,j (z). Since, each Rij (z) operates at 25 KHz, the total number of multipli-
cations performed per second = 60× 25× 103 = 1.5× 106.

If lij are the number of coefficients in Rij (z), then the number of additions required for one output

sample is lij − 1. We also know that
2∑
i=0

3∑
j=0

lij = 60. We also perform 9 additions/sample at the

output of Rij (z)s. Therefore, the total number of additions performed per second = 25 × 103 ×(
2∑
i=0

3∑
j=0

(lij − 1) + 9

)
= 25× 103 × (60− 12 + 9) = 1.425× 106.

The additions after upsampling by 3 can be avoided because only one out of the three samples to
be added will be non-zero. Therefore, these additions are not counted.
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(P. P. Vaidyanathan, 4.16)
The given statement is not true.
We justify it with a counter example.
We have,

g(n) = h(2n) (37)

Choose a all pass G (z)

G(z) = g0 + g1z
−1 + ...

with ∣∣G (ejω)∣∣ = 1.

In order to satisfy our given equation we can choose H(z) as follows,

H(z) = g0 + 0.z−1 + g1z
−2 + 0.z−3 + ...

= G
(
z2
)

=⇒ H
(
ejω
)
= G

(
e2jω

)
=⇒

∣∣H (ejω)∣∣ = ∣∣G (e2jω)∣∣ = 1.

Therefore, H (z) is an all pass filter.
We have shown a counter example where H (z) is an all pass filter and g (n) = h (2n) is also an all

pass filter and H (z) is not an impluse function.
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(P. P. Vaidyanathan, 4.21)

H0 (z) = 1 + 2z−1 + 4z−2 + 2z−3 + z−4

=
(
1 + 4z−2 + z−4

)
+ z−1

(
2 + 2z−2

)
H1 (z) = H0 (−z) =

(
1 + 4z−2 + z−4

)
− z−1

(
2 + 2z−2

)
The polyphase components are

E0

(
z2
)
= 1 + 4z−2 + z−4

E0

(
z2
)
= 2 + 2z−2.

X0 (z) = H0 (z)X (z) =
[(
1 + 4z−2 + z−4

)
+ z−1

(
2 + 2z−2

)]
X (z)

X1 (z) = H1 (z)X (z) =
[(
1 + 4z−2 + z−4

)
− z−1

(
2 + 2z−2

)]
X (z)

In matrix form, [
X0 (z)
X1 (z)

]
=

[
1 1
1 −1

]
︸ ︷︷ ︸

2×2 IDFT Matrix

[(
1 + 4z−2 + z−4

)
z−1

(
2 + 2z−2

) ]X (z)

The implementation is given in the figure below.

1 + 4z−2 + z−4

2 + 2z−2

X(z)
X0(z)

X1(z)

z−1

2× 2
IDFT Matrix

−1
E0(z

2)

E1(z
2)

H0(z)

H1(z)

X(z)

X0(z)

X1(z)

X(z)
X0(z)

X1(z)
2× 2

IDFT Matrix

−1
z−2

2

4

z−4

z−3
z−1

E0(z
2)

z−1E1(z
2)
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(P. P. Vaidyanathan, 4.27)

H0 (z) =

N∑
i=0

h0 (i) z
−i

Hk (z) = H
(
zW k

)
=

N∑
i=0

h0 (i)
(
zW k

)−i
=

N∑
i=0

h0 (i)W
−ikz−i

=⇒ hk (i) = h0 (i)W
−ik, i = 0, · · ·N ; k = 0, 1, 2, 3, 4.

(Part a) If h1 (1) = h0 (1)W
−1. Since h0 (1) is real and W−1 = e−

j2π
5 is complex, h1 (1) is

complex. Therefore, hk (n) , 1 ≤ k ≤ 4 are not all real for all n.
(Part b)

G1 (z) = H1 (z) +H4 (z)

=

N∑
i=0

h0 (i)W
−iz−i +

N∑
i=0

h0 (i)W
−4iz−i

=

N∑
i=0

h0 (i)
(
W−i +W−4i

)
z−i

=

N∑
i=0

h0 (i)
(
W−i +W i

)
z−i

(
W 5 = 1 =⇒ W−4i =W 5i−4i)

=

N∑
i=0

h0 (i)
(
e−j

2iπ
5 + ej

2iπ
5

)
z−i

G1 (z) =

N∑
i=0

h0 (i) cos

(
2iπ

5

)
z−i

=⇒ g1 (n) = h0 (n) cos

(
2π

5
n

)

G2 (z) = H2 (z) +H3 (z)

=

N∑
i=0

h0 (i)W
−2iz−i +

N∑
i=0

h0 (i)W
−3iz−i

=

N∑
i=0

h0 (i)
(
W−2i +W−3i

)
z−i

=

N∑
i=0

h0 (i)
(
W−2i +W 2i

)
z−i

(
W 5 = 1 =⇒ W−3i =W 5i−4i)

=

N∑
i=0

h0 (i)
(
e−j

4iπ
5 + ej

4iπ
5

)
z−i

G2 (z) =

N∑
i=0

h0 (i) cos

(
4iπ

5

)
z−i

=⇒ g2 (n) = h0 (n) cos

(
4π

5
n

)
Therefore, g1 (n) and g2 (n) are all real.
(Part c)
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∣∣G2

(
ejω
)∣∣ need not necessarily look ’good’ in the pass band. However, if the phase responses of

H2

(
ejω
)
and H3

(
ejω
)
are equal in the overlapping regions, the magnitude response

∣∣G2

(
ejω
)∣∣ will be

constant in the pass band.

|H0(e
jω)|

|H1(e
jω)| = |H1(e

j(ω− 2π
5 ))|

|G1(e
jω)| = |H1(e

jω)|+ |H4(e
jω)|

|G2(e
jω)| = |H2(e

jω) +H3(e
jω)|

|H1(e
jω)| = |H1(e

j(ω− 8π
5 ))|

|H1(e
jω)| = |H1(e

j(ω− 4π
5 ))|

|H1(e
jω)| = |H1(e

j(ω− 6π
5 ))|

ω

ω

ω

ω

ω

ω

ω

π
5

−π
5−2π 2π

2π
5

π
5

3π
5

12π
5− 8π

5

− 12π
5

−π
5− 3π

5
−2π
5

8π
5

2π
5

π
5

3π
5

−π
5− 3π

5
−2π
5

8π
5

12π
5− 12π

5 − 8π
5

4π
5

2π
5

5π
5 14π

5− 6π
5

16π
5

−4π
5

−14π
5

6π
5

5π
5

7π
5

4π
5

2π
5 6π

5

7π
5 16π

5
14π
5

−14π
5

− 16π
5

− 16π
5

−4π
5− 6π

5
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(P. P. Vaidyanathan, 4.28)
Writing the polyphase decomposition of H0 (z):

H0 (z) = E0

(
z2
)
+ z−1E1

(
z2
)

H1 (z) = H0 (−z) = E0

(
z2
)
− z−1E1

(
z2
)
.

From the figure, the output signal is

X̂ (z) = (F0 (z)H0 (z) + F1 (z)H1 (z))X (z)

=⇒ X̂ (z)

X (z)
= E0

(
z2
)
(F0 (z) + F1 (z)) + z−1E1

(
z2
)
(F0 (z)− F1 (z)) .

(Part a)

H0 (z) = 1 + 3z−1 + 0.5z−2 + z−3

=⇒ E0

(
z2
)
= 1 + 0.5z−2

z−1E1

(
z2
)
= 3z−1 + z−3

X̂ (z)

X (z)
=
(
1 + 0.5z−2

)
(F0 (z) + F1 (z)) +

(
3z−1 + z−3

)
(F0 (z)− F1 (z))

We can choose F0 (z) = F1 (z) =
1

2(1+0.5z−2) =⇒ X̂(z)
X(z) = 1. Note that F0 (z) and F1 (z) are causal

and stable because the poles are located at ±j 1√
2
(inside unit circle).

(Part b)

H0 (z) = 1 + 2z−1 + 3z−2 + 2z−3 + z−4

=⇒ E0

(
z2
)
= 1 + 3z−2 + z−4

z−1E1

(
z2
)
= 2

(
z−1 + z−3

)

X̂ (z)

X (z)
=
(
1 + 3z−2 + z−4

)
(F0 (z) + F1 (z)) + 2

(
z−1 + z−3

)
(F0 (z)− F1 (z))

=
((

1 + z−2
)2

+ z−2
)
(F0 (z) + F1 (z)) + 2z−1

(
1 + z−2

)
(F0 (z)− F1 (z))

Choose

F0 (z) + F1 (z) = z−1

F0 (z)− F1 (z) = −
1

2

(
1 + z−2

)

=⇒ X̂ (z)

X (z)
= z−1

(
1 + z−2

)2
+ z−3 − z−1

(
1 + z−2

)2
= z−3

Therefore, perfect reconstruction is possible with following causal FIR filters:

F0 (z) =
1

4

(
−1 + z−2

)
F1 (z) =

1

4

(
1 + 3z−2

)
.

16


