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(P. P. Vaidyanathan, 3.1)
H(z) is given to be a linear phase filter. To prove G(z) a linear phase filter we just have to show
g(n) = g(N —n). We have,
g(n) = (=1)Md(n — M) = (=1)"h(n), (1)

with M = &
(Part a) We have,

g(N =n) = (=DM8(N —n— M) - (=1)"""h(N —n),
= (=)M§(M —n) — (=1)N""h(n), [ h(n) is a linear phase filter] (2)

Also we have, 6(M —n) = d(n — M). Thus, we get,

g(N —n) = g(n),
which proves g(n) is a linear phase FIR filter.



(Part b) Using h(n) = h (N —n), we have
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Figure 1: Amplitude response of |H (e/%)]

Thus, the amplitude response is,
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Figure 2: Plots



(P. P. Vaidyanathan, 3.13)

(Part a)
For real @ it is clear that e*? is real. The geometric mean of e’ and e~? is 1. With the property that

arithmetic mean is equal to or greater than the geometric mean, we have

0 —0
Tr = 76 _;6 2 1 (7)

Now we assume 6 is complex. Let § = a + ib. Thus we have,

69 + 670 eaJrib + efafib

2 2
€% (cos b+ isin b) + e~ (cos b — isin b)
B 2
_cosbx (e"4e™?) +isinbx (e —e?) ()
B 2

For the above equation to have a real value either b = 0 or (e* —e~*) = 0. Clearly the former is
not true, then 6 will be real. Thus, taking the latter as true we have

Thus, 6 = ib. To make = have a value in [—1,1] a = 0 and b = jw. With § = jw we have,

el eI
2

= COS w

xTr =

Thus, —1 <z < 1.
(Part b)

R.H.S = cosh(N6) cosh 6 £ sinh(N) sinh 6

_ (eNt‘) + 67N6) (69 + 670) + (61\79 _ efNO) (60 _ 679)

10
: (10)
Taking just the addition '+’ first, (subtraction can be also check similarly)
e(NF1O 4 (0(1=N) 4 ((N=1)0 4 —0(N+1) 4 o(N+1)0 _ 0(1=N) _ (N=1)0 4 —0(N+1)
R.H.S = 1
) (e(N+1)e + e—e(N+1))
B 4
e
2
= cosh ((N +1)0)
= L.HS. (11)

The second part of this question is as follows,
We have,



Thus,

21‘01\{(1‘) — CNfl(l') =

Thus, we have proved

(Part b)
We have,

Cn(x) = cosh(NO)

(eNO 4 efNH)

2z cosh(NO) — cosh((N — 1)0)
eNO 4 o=ON  J(N=1)0 4 ,—0(N-1)

2 _
T 2

2 2

) <60+60) eNO L g=ON  (N=-1)0 4 —0(N—1)

ON+1) 4 (B(N=1) 4 0(1-N) 4 —0(1+N) _ o(N=1)8 _ ,—0(N-1)

2

2
O(N+1) 4 o—O(N+1)

2
cosh((N +1)6)

CN_H(l‘).

CN_H(J?) = 2.230]\[(.13) — CN_l(Z‘)

Co(x) =1
Cl (I =
Cy(z) = 22C4 () — Co(x)
=227 —1

Cy(z) = 22C3(x) — Co(x)
= 22(42® — 3x) — 227 + 1
=8zt — 82 +1

Cs(z) = 22Cy(x) — C5(x)
=22(8x* — 82 + 1) — 42® + 32
= 162° — 202° + 52.
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Figure 3: Plots of Cn(x)

(Part d)
CN(l‘) = 2370]\[_1(.%‘) — CN_Q(l‘) (23)

For,

Co(x) =1 [the required condition is true]
C4(x) = x [the required condition is true]
We also assume the required condition is true for 0,1,2,..., N — 1.
Case 1: When N is even.
Cn_1(z) has odd powers, so xCn_1(z) has even powers. Cny_o(z) also has even powers. Thus,
Cn also has even powers.
Case 2: When N is odd.
Cn—1(z) has even powers, so 2Cx_1(z) has odd powers. Cy_o(z) also has odd powers. Thus, Cy

also has odd powers.
Thus, our required condition is true for any N.

Cn(1) = cosh(N cosh™' 1)
= cosh(N x 0)
=1 (24)
We have,

Cn(z) =22Cn_1(z) — Cn_2(x)
=222%Cn_o(2) — 42CN_3 — Cn_4()

The first term R.H.S has the form of 2% for the term Cy_(x). The first term is Cy_1(x) for the
polynomial C(x) which implies that the corresponding coefficient is 2V —1.



(Part e)
We have,

CN((E) =0
or, cosh(N@) =0

This means,

NO = jkm
jkm
g =20
or, N
Now,
cosh(N@) = cosh(N cosh™' ) = 0
Thus,
cosh™* L

or, x = cosh k—ﬂ
, T = ]N

which proves —1 <z < 1.



(P. P. Vaidyanathan, 4.7)
For 0 < k < M — 1 the two sets are,
S = (WO W WY and 8 = {WO, W, wEOD

Necessary condition: Let us take k1 and ko such that 0 < ky < kg < M — 1. Thus, S = Sy, for
some k1 and ko such that 0 < ky < ko < M — 1 with the condition

le mod M = kQL mod M
or, (k1 — k2)L mod M = 0.

Since, ko — k1 # 0 and k1 — ko < M — 1, thus, M does not divide ko — k1. Therefore, (k1 —
ko)L mod N = 0 holds true only for some factor (not equal to 1) of M divides L, which implies
g.c.d(M,L) = 1. Thus, M and L are relatively prime.

Sufficient condition:

Let g.c.d(M,L) = 1. Since 0 < k1 < ko < M — 1 for all ky # ki, M does not divide (ky — k1).
Which means, M also does not divide (ko — k1) x L as g.c.d(M, L) = 1. Therefore,

(k‘l — k‘g)L mod M 75 0.

Which means,

k1L mod M # koL mod M
Hence, the elements kL mod M are all unique for 0 < k < M — 1. Therefore the set S = Sy.



(P. P. Vaidyanathan, 4.8)

(Part a)

We are given for figure (a)

Mn :
x (552 where, n = multiple of L.
iy = = (7 | (25)
0 otherwise
For figure (b) let us consider x2(n) to be the function after the upsampler L. Thus,
r (3 where, n = multiple of L.
ra(n) = 1 (2) | b (26)
0 otherwise.
Finally we obtain
Mn .
x (52 where, Mn = multiple of L.
Ya2(n) = (%) . (27)
0 otherwise
(Part a)
We apply z-transform on both y;(n) and ya(n),
| M-l ( } )
Vi(z)=— Y X (emWF (28)
M=
and,
] M-
L
Ya(x) = 37 D X (mw“) (29)
k=0

The difference between Y7(z) and Y5(z) is clearly in the powers of W. The first one is W* and the
second one is W*_ In order for them to be equal L and M has to be relatively prime. The explanation
is already given in problem 4.7.



(P. P. Vaidyanathan, 4.10)
We have,

z(n) =xz(n+ N) (30)
y(n) is a M —fold decimated version of x(n). Thus,

y(n) = z(Mn) (31)
=2z(Mn+ N) (32)

Now,
yin+ L) =x(Mn+ ML —kN) (33)

Here k is an integer, which means we are taking the k*" period of the function. In order to show,
y(n+ L) = y(n), it is good enough to show y(n + L) = 2(Mn). Thus, this condition forces us to make

ML—-EN =0 (34)
which is,
ML
k=— 35
s (3)
Thus, we can easily choose a integer k for which L < co. We also have,
kN
L=— 36

In order to find the smallest L, we have to find smallest /N such that kN is divisible by M. kN
is trivially divisible by N. Therefore the smallest kN is

kN = LCM (M, N)

 LOM (M, N)
= k=
KN LCM (M, N)
= oy ML)
— M M
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(P. P. Vaidyanathan, 4.15)
The filter H (z) can be decomposed into polyphase form as

H(2) =Ry (2*) + 27 'Ri (2*) + 27 2Ry (%) .
The polyphase components Ry (z), Ry (z) and Ry (z) can be further decomposed as
R; (2) = Rio (24) +27'Riy (24) +272R; (24) + 23R4 (24) , 1=0,1,2.

Using the above polyphase decompositions, the given fractional decimation filter can be efficiently
implemented as

(Part a) If the filter is implemented directly, the sample rate of the signals x; [n], 22 [n] at the
input and output of H (z) is Lx100 KHz= 300 KHz. Therefore, the implementation of H (z) must
perform 60 multiplications per % x 1072 seconds. If the multiplications are performed parallely, each
multiplier has % x 1075 = 3.33 pus. If the multiplications are performed serially, each multiplier has
a5 X & x 107° ~ 55.56 ns.

(Part b) If the filter is implemented in efficient way using polyphase decomposition, sample rates
at the input and output of the filters R;; (z) is 47 x 100 KHz= 25 KHz. If the multiplications are
performed parallely, each multiplier has % x 1072 = 40 ps.

(Part c¢) In the polyphase decomposition, the 60 coefficients of H (z) are split across various
polyphase components R; ; (z). Since, each R;; (z) operates at 25 KHz, the total number of multipli-
cations performed per second = 60 x 25 x 103 = 1.5 x 10°.

If I;; are the number of coefficients in R;; (z), then the number of additions required for one output

2 3

sample is [;; — 1. We also know that > > I;; = 60. We also perform 9 additions/sample at the
i=05=0

output of R;;(z)s. Therefore, the total number of additions performed per second = 25 x 103 x

2 3
3 (lij—1)+9 | =25x%x10% x (60 — 12+ 9) = 1.425 x 10°.
i=0j=0
The additions after upsampling by 3 can be avoided because only one out of the three samples to
be added will be non-zero. Therefore, these additions are not counted.
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(P. P. Vaidyanathan, 4.16)

The given statement is not true.

We justify it with a counter example.
We have,

g(n) = h(2n) (37)
Choose a all pass G (z)
G(z)=go+aqz "+ ..

with ‘
|G (63‘“)| =1.

In order to satisfy our given equation we can choose H(z) as follows,

H(z)=go+ 02 +g1272 40273+ ...
= G(Z2)
= H (ej“’) = G(er‘”)
= [H ()| =[G ()] = 1.

Therefore, H (z) is an all pass filter.
We have shown a counter example where H (z) is an all pass filter and g (n) = h(2n) is also an all

pass filter and H (z) is not an impluse function.
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(P. P. Vaidyanathan, 4.21)
Ho(2) =142t +4272 42273 4 74
= (1 +4272 4 2_4) + 271 (2 + 22_2)
Hy(2) =Ho(—2) = (1+42 2+ 27%) — 271 (2+2:77)
The polyphase components are
Ey (zg) =144z"2427%
Ey (22) =242272

Xo(2)=Ho(2) X (2) =[(14+4272 +27%) + 271 (24+227?)] X (2)
Xi(z)=H1(2) X (2) = [(1+422+27%) — 271 (2+2272)] X (2)
Xo (2 1 1 14+4272 4274
wil= b A ey xe

2x2IDFT Matrix

The implementation is given in the figure below.

Xo(2)
— Ho(z)
X(z)
X1 (Z)
Hi(z) ——>»
X(z) 1442724274 >
EO(ZZ) Xo(Z)
1Y -1
242272 >
X1(2)
Ey(2%) 2 % 2
IDFT Matrix
Ey(2?)
X(z) T >
- Xo(2)
ERNC 5
- >
N EE X1(2)
2x2
IDFT Matrix
27 B (2?)
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(P. P. Vaidyanathan, 4.27)

N
Hy(2) = ho(i)z™"
i=0
N
Hy (2) = H (zWF) = Z ho (i) (zWF) b = Z ho (i) W=
=0 i=0

— hp(i)=ho())W™*, i=0,---N; k=0,1,2,3,4.
1

(Part a) If hy (1) = ho(1)
complex. Therefore, hy (n), 1 <

_jem

4 are not all real for all n.

(Part b)
G1(2) = Hy (2) + Hy (2)
N N
=D ho (YW ™27+ ho () W42
1=0 =0

N
= > ho (i) (W W

N N
=D ho ()W Y ho (YW
=0 =0

=0
N
= Zho (9) (W—Qi + W2i) 5 (W5 1 — B — W5i—4i)

=3 ho (i) (7% i) 2

=0

Ga (2) = ZN: ho (i) cos (4@5”) i

e o) =twgen (152

Therefore, g; (n) and g5 (n) are all real.
(Part c)

14

W~L. Since ho (1) is real and W~! = ¢="5 is complex, hy (1) is
k <



|G2 (ej‘”)‘ need not necessarily look ’good’ in the pass band. However, if the phase responses of
H> (ej“’) and Hs (ej“’) are equal in the overlapping regions, the magnitude response ‘GQ (ej"’)| will be
constant in the pass band.

T |Ho(e?)]

- % et % >
-2 5 5 2 “
T |Hy(e7)] = | Hy (/%))
- _%7\' ﬂg ; E)’ﬂ léw >
5 5 ?ﬂ 5 5 w
T H (e5)] = | Hy (e 5))|
- t t t t |
_li2n S 8 w
> —2r >
T |G1(e?*)| = |H1(e79)] + [Ha(e?®)|
- t t 3 +—— +—+ §3 t t |
T T T T
—E - ThaesEw A w
5
T |[Hi(e7%)] = [Hy (el )|
- } +—+—+ +—+—+ } L
T _ler _6r 2 an 5T Lax W
5 5 5 5
T [Hy(e%)] = [Hy (e~ 5))|
e 1 1 1 1 1 1 | -

15



(P. P. Vaidyanathan, 4.28)
Writing the polyphase decomposition of Hy (2):

Ho(z) = Eo (2%) + 27 Ey (2%)
H,(z) = Ho(—2)=Ep (zz) —2'E (22) .

From the figure, the output signal is

X (2) = (Fo (2) Ho (2) + F1 (2) H1 (2)) X (2)
= igz; = Eo (2’2) (FQ (Z) + F1 (Z)) + 271E1 (22) (FO (Z) — F1 (Z)) .
(Part a)
Ho(2) =1+3271 4052724273
= Ey(z°) =1+05277
2R (22) =3z"14273
X(2) = (1405272) (Fy (2) + Fi (2)) + (327" + 27%) (Fy (2) — F1 (2))

We can choose Fy (2) = Fy (2) = 2(1+071.5z_2) = ﬁgz; = 1. Note that F (z) and Fj (z) are causal

and stable because the poles are located at + j% (inside unit circle).

(Part b)
Ho(2) =142z #3272 42273 4274
= Eo(z*)=1+32"7+27*
2 R, (z2) =2 (271 +z 3)
§E§ = (1437242 (R +A()+2( +27) (R (2) - 11 (2))
_ ((1 +22)2 4 2*2) (Fo (2) + Fy (2)) + 2271 (14 272) (Fo (2) — Fi (2))
Choose

Fo(2)+ Fy(2) =271
Fo(s) = Fi(2) = —3 (1427%)

Therefore, perfect reconstruction is possible with following causal FIR filters:

Fy(2) = (71 + 272)

N N

Fy(z)=—(1+3277).
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