E9-252: Mathematical Methods and Techniques in Signal Processing Homework 1 Solutions

Instructor: Prof. Shayan G. Srinivasa Teaching Assistant: Chaitanya Kumar Matcha Solutions prepared by: Shounak Roy and Chaitanya Kumar Matcha

28 September 2016

(P. P. Vaidyanathan, 3.1)

H(z) is given to be a linear phase filter. To prove G(z) a linear phase filter we just have to show g(n) = g(N - n). We have,

$$g(n) = (-1)^M \delta(n - M) - (-1)^n h(n), \tag{1}$$

with $M = \frac{N}{2}$. (Part a) We have,

$$g(N-n) = (-1)^{M} \delta(N-n-M) - (-1)^{N-n} h(N-n),$$

= $(-1)^{M} \delta(M-n) - (-1)^{N-n} h(n), [:: h(n) is a linear phase filter] (2)$

Also we have, $\delta(M - n) = \delta(n - M)$. Thus, we get,

$$g(N-n) = g(n),$$

which proves g(n) is a linear phase FIR filter.

(Part b) Using h(n) = h(N - n), we have

$$\begin{split} H\left(e^{j\omega}\right) &= \sum_{n=0}^{\frac{N}{2}-1} h\left(n\right) e^{-j\omega n} + \sum_{n=\frac{N}{2}+1}^{N} h\left(n\right) e^{-j\omega n} + h\left(\frac{N}{2}\right) e^{-j\omega \frac{N}{2}} \\ &= \sum_{n=0}^{\frac{N}{2}-1} h\left(n\right) e^{-j\omega n} + \sum_{n'=0}^{\frac{N}{2}-1} h\left(n-n'\right) e^{-j\omega\left(N-n'\right)} + h\left(\frac{N}{2}\right) e^{-j\omega \frac{N}{2}} \quad (n'-N-n) \\ &= \sum_{n=0}^{\frac{N}{2}-1} h\left(n\right) e^{-j\omega n} + \sum_{n'=0}^{\frac{N}{2}-1} h\left(n\right) e^{-j\omega(N-n)} + h\left(\frac{N}{2}\right) e^{-j\omega \frac{N}{2}} \\ &= \sum_{n=0}^{\frac{N}{2}-1} h\left(n\right) \left(e^{-j\omega n} + e^{-j\omega(N-n)}\right) + h\left(\frac{N}{2}\right) e^{-j\omega \frac{N}{2}} \\ &= e^{-j\omega \frac{N}{2}} \sum_{n=0}^{\frac{N}{2}-1} h\left(n\right) \left(e^{-j\omega\left(n-\frac{N}{2}\right)} + e^{j\omega\left(n-\frac{N}{2}\right)}\right) + h\left(\frac{N}{2}\right) e^{-j\omega \frac{N}{2}} \\ H\left(e^{j\omega}\right) &= e^{-j\omega \frac{N}{2}} \underbrace{\left[2\sum_{n=0}^{\frac{N}{2}-1} h\left(n\right)\cos\left(\omega\left(n-\frac{N}{2}\right)\right) + h\left(\frac{N}{2}\right)\right]}_{H_{R}(\omega) \text{ real valued}} \end{split}$$

$$H\left(e^{j\omega}\right) = e^{-j\omega\frac{N}{2}}H_{r}\left(\omega\right)$$
$$\implies H\left(-e^{j\omega}\right) = (-1)^{\frac{N}{2}}e^{-j\omega\frac{N}{2}}H_{R}\left(\omega+\pi\right)$$

We have,

$$G\left(e^{j\omega}\right) = (-1)^{M} e^{-j\omega M} - H\left(-e^{j\omega}\right).$$
(3)

$$G(e^{j\omega}) = (-1)^{\frac{N}{2}} e^{-j\omega\frac{N}{2}} - (-1)^{\frac{N}{2}} e^{-j\omega\frac{N}{2}} H_R(\omega + \pi)$$
(4)

$$G(e^{j\omega}) = (-1)^{\frac{N}{2}} e^{-j\omega \frac{N}{2}} \left[1 - H_R(\omega + \pi)\right].$$
(5)

The amplitude response of $H(e^{j\omega})$ is given as follows

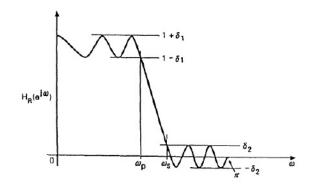


Figure 1: Amplitude response of $|H(e^{j\omega})|$

Thus, the amplitude response is,

$$|G(e^{j\omega})| = |1 - H_R(\omega + \pi)|$$
(6)

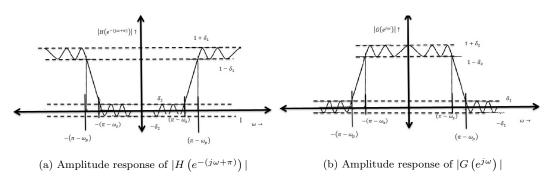


Figure 2: Plots

(P. P. Vaidyanathan, 3.13)

(Part a)

For real θ it is clear that $e^{\pm \theta}$ is real. The geometric mean of e^{θ} and $e^{-\theta}$ is 1. With the property that arithmetic mean is equal to or greater than the geometric mean, we have

$$x = \frac{e^{\theta} + e^{-\theta}}{2} \ge 1 \tag{7}$$

Now we assume θ is complex. Let $\theta = a + ib$. Thus we have,

$$\frac{e^{\theta} + e^{-\theta}}{2} = \frac{e^{a+ib} + e^{-a-ib}}{2}$$
$$= \frac{e^a (\cos b + i\sin b) + e^{-a} (\cos b - i\sin b)}{2}$$
$$= \frac{\cos b \times (e^a + e^{-a}) + i\sin b \times (e^a - e^{-a})}{2}$$
(8)

For the above equation to have a real value either b = 0 or $(e^a - e^{-a}) = 0$. Clearly the former is not true, then θ will be real. Thus, taking the latter as true we have

$$(e^{a} - e^{-a}) = 0$$

or $a = 0.$ (9)

Thus, $\theta = ib$. To make x have a value in [-1, 1] a = 0 and $b = j\omega$. With $\theta = j\omega$ we have,

$$x = \frac{e^{j\omega} + e^{-j\omega}}{2}$$
$$= \cos \omega$$

Thus, $-1 \le x \le 1$.

(Part b)

$$R.H.S = \cosh(N\theta)\cosh\theta \pm \sinh(N\theta)\sinh\theta$$
$$= \frac{\left(e^{N\theta} + e^{-N\theta}\right)\left(e^{\theta} + e^{-\theta}\right) \pm \left(e^{N\theta} - e^{-N\theta}\right)\left(e^{\theta} - e^{-\theta}\right)}{4}$$
(10)

Taking just the addition '+' first, (subtraction can be also check similarly)

$$R.H.S = \frac{e^{(N+1)\theta} + e^{\theta(1-N)} + e^{(N-1)\theta} + e^{-\theta(N+1)} + e^{(N+1)\theta} - e^{\theta(1-N)} - e^{(N-1)\theta} + e^{-\theta(N+1)}}{4}$$

$$= \frac{2\left(e^{(N+1)\theta} + e^{-\theta(N+1)}\right)}{4}$$

$$= \frac{e^{(N+1)\theta} + e^{-\theta(N+1)}}{2}$$

$$= \cosh\left((N+1)\theta\right)$$

$$= L.H.S.$$
(11)

The second part of this question is as follows, We have,

$$C_N(x) = \cosh(N\theta)$$

= $\frac{\left(e^{N\theta} + e^{-N\theta}\right)}{2}$ (12)

Thus,

$$2xC_{N}(x) - C_{N-1}(x) = 2x \cosh(N\theta) - \cosh((N-1)\theta)$$

$$= 2x \frac{e^{N\theta} + e^{-\theta N}}{2} - \frac{e^{(N-1)\theta} + e^{-\theta(N-1)}}{2}$$

$$= 2\left(\frac{e^{\theta} + e^{-\theta}}{2}\right) \frac{e^{N\theta} + e^{-\theta N}}{2} - \frac{e^{(N-1)\theta} + e^{-\theta(N-1)}}{2}$$

$$= \frac{e^{\theta(N+1)} + e^{\theta(N-1)} + e^{\theta(1-N)} + e^{-\theta(1+N)} - e^{(N-1)\theta} - e^{-\theta(N-1)}}{2}$$

$$= \frac{e^{\theta(N+1)} + e^{-\theta(N+1)}}{2}$$

$$= \cosh((N+1)\theta)$$

$$= C_{N+1}(x).$$
(13)

Thus, we have proved

$$C_{N+1}(x) = 2xC_N(x) - C_{N-1}(x)$$
(14)

(Part b)

We have,

$$C_0(x) = 1 \tag{15}$$

$$C_{1}(x) = x$$
(16)

$$C_{2}(x) = 2xC_{1}(x) - C_{0}(x)$$

$$= 2x^2 - 1$$
(17)

$$C_{3}(x) = 2xC_{2}(x) - C_{1}(x)$$

= 2x(2x² - 1) - x
(10)

$$= 4x^{2} - 3x$$
(18)
$$C_{4}(x) = 2xC_{3}(x) - C_{2}(x)$$

$$= 2x(4x^3 - 3x) - 2x^2 + 1$$

= $8x^4 - 8x^2 + 1$ (19)

$$C_5(x) = 2xC_4(x) - C_3(x)$$
(20)

$$= 2x(8x^4 - 8x^2 + 1) - 4x^3 + 3x \tag{21}$$

$$=16x^5 - 20x^3 + 5x. (22)$$

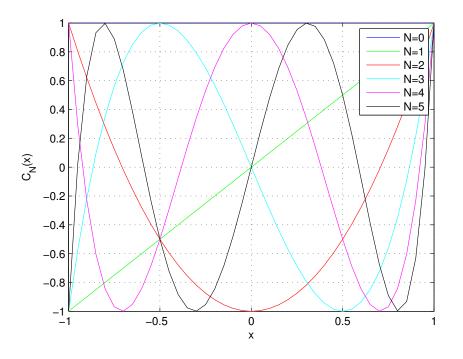


Figure 3: Plots of $C_N(x)$

(Part d)

$$C_N(x) = 2xC_{N-1}(x) - C_{N-2}(x)$$
(23)

For,

 $C_0(x) = 1$ [the required condition is true] $C_1(x) = x$ [the required condition is true]

We also assume the required condition is true for 0, 1, 2, ..., N - 1. Case 1: When N is even.

 $C_{N-1}(x)$ has odd powers, so $xC_{N-1}(x)$ has even powers. $C_{N-2}(x)$ also has even powers. Thus, C_N also has even powers.

Case 2: When N is odd.

 $C_{N-1}(x)$ has even powers, so $xC_{N-1}(x)$ has odd powers. $C_{N-2}(x)$ also has odd powers. Thus, C_N also has odd powers.

Thus, our required condition is true for any N.

$$C_N(1) = \cosh(N \cosh^{-1} 1)$$

= $\cosh(N \times 0)$
= 1. (24)

We have,

$$C_N(x) = 2xC_{N-1}(x) - C_{N-2}(x)$$

= $2^2x^2C_{N-2}(x) - 4xC_{N-3} - C_{N-4}(x)$

The first term R.H.S has the form of 2^k for the term $C_{N-k}(x)$. The first term is $C_{N-1}(x)$ for the polynomial $C_N(x)$ which implies that the corresponding coefficient is 2^{N-1} .

(Part e)

We have,

$$C_N(x) = 0$$

or, $\cosh(N\theta) = 0$

This means,

$$N\theta = jk\pi$$

or, $\theta = \frac{jk\pi}{N}$

Now,

$$\cosh(N\theta) = \cosh(N\cosh^{-1}x) = 0$$

Thus,

$$\cosh^{-1} x = j \frac{k\pi}{N}$$

or, $x = \cosh\left(j \frac{k\pi}{N}\right)$
$$= \cos\left(\frac{k\pi}{N}\right)$$

which proves $-1 \le x \le 1$.

(P. P. Vaidyanathan, 4.7)

For $0 \le k \le M - 1$ the two sets are,

$$S = \{W^0, W^1, ..., W^{M-1}\}$$
 and $S_L = \{W^0, W^L, ..., W^{L(M-1)}\}$

Necessary condition: Let us take k_1 and k_2 such that $0 \le k_1 < k_2 \le M - 1$. Thus, $S = S_L$ for some k_1 and k_2 such that $0 \le k_1 < k_2 \le M - 1$ with the condition

$$k_1L \mod M = k_2L \mod M$$

or, $(k_1 - k_2)L \mod M = 0.$

Since, $k_2 - k_1 \neq 0$ and $k_1 - k_2 \leq M - 1$, thus, M does not divide $k_2 - k_1$. Therefore, $(k_1 - k_2)L$ mod N = 0 holds true only for some factor (not equal to 1) of M divides L, which implies g.c.d(M, L) = 1. Thus, M and L are relatively prime.

Sufficient condition:

Let g.c.d(M,L) = 1. Since $0 \le k_1 < k_2 \le M - 1$ for all $k_2 \ne k_1$, M does not divide $(k_2 - k_1)$. Which means, M also does not divide $(k_2 - k_1) \times L$ as g.c.d(M,L) = 1. Therefore,

$$(k_1 - k_2)L \mod M \neq 0.$$

Which means,

$$k_1L \mod M \neq k_2L \mod M$$

Hence, the elements $kL \mod M$ are all unique for $0 \le k \le M - 1$. Therefore the set $S = S_L$.

(P. P. Vaidyanathan, 4.8)

(Part a)

We are given for figure (a)

$$y_1(n) = \begin{cases} x\left(\frac{Mn}{L}\right) & \text{where, } n = \text{multiple of } L.\\ 0 & \text{otherwise} \end{cases}$$
(25)

For figure (b) let us consider $x_2(n)$ to be the function after the upsampler L. Thus,

$$x_2(n) = \begin{cases} x\left(\frac{n}{L}\right) & \text{where, } n = \text{multiple of } L.\\ 0 & \text{otherwise.} \end{cases}$$
(26)

Finally we obtain

$$y_2(n) = \begin{cases} x\left(\frac{Mn}{L}\right) & \text{where, } Mn = \text{multiple of } L.\\ 0 & \text{otherwise} \end{cases}$$
(27)

(Part a)

We apply z-transform on both $y_1(n)$ and $y_2(n)$,

$$Y_1(z) = \frac{1}{M} \sum_{k=0}^{M-1} X\left(z^{\frac{L}{M}} W^k\right)$$
(28)

and,

$$Y_2(z) = \frac{1}{M} \sum_{k=0}^{M-1} X\left(z^{\frac{L}{M}} W^{kL}\right)$$
(29)

The difference between $Y_1(z)$ and $Y_2(z)$ is clearly in the powers of W. The first one is W^k and the second one is W^{kL} . In order for them to be equal L and M has to be relatively prime. The explanation is already given in problem 4.7.

(P. P. Vaidyanathan, 4.10)

We have,

$$x(n) = x(n+N) \tag{30}$$

y(n) is a *M*-fold decimated version of x(n). Thus,

$$y(n) = x(Mn) \tag{31}$$

$$=x(Mn+N) \tag{32}$$

Now,

$$y(n+L) = x(Mn+ML-kN)$$
(33)

Here k is an integer, which means we are taking the k^{th} period of the function. In order to show, y(n+L) = y(n), it is good enough to show y(n+L) = x(Mn). Thus, this condition forces us to make

$$ML - kN = 0 \tag{34}$$

which is,

$$k = \frac{ML}{N} \tag{35}$$

Thus, we can easily choose a integer k for which $L < \infty$. We also have,

$$L = \frac{kN}{M} \tag{36}$$

In order to find the smallest L, we have to find smallest kN such that kN is divisible by M. kN is trivially divisible by N. Therefore the smallest kN is

$$kN = \text{LCM}(M, N)$$
$$\implies k = \frac{\text{LCM}(M, N)}{N}$$
$$\implies L = \frac{kN}{M} = \frac{\text{LCM}(M, N)}{M}.$$

(P. P. Vaidyanathan, 4.15)

The filter H(z) can be decomposed into polyphase form as

$$H(z) = R_0(z^3) + z^{-1}R_1(z^3) + z^{-2}R_2(z^3).$$

The polyphase components $R_0(z)$, $R_1(z)$ and $R_2(z)$ can be further decomposed as

$$R_{i}(z) = R_{i0}(z^{4}) + z^{-1}R_{i1}(z^{4}) + z^{-2}R_{i2}(z^{4}) + z^{-3}R_{i3}(z^{4}), \quad i = 0, 1, 2.$$

Using the above polyphase decompositions, the given fractional decimation filter can be efficiently implemented as

(Part a) If the filter is implemented directly, the sample rate of the signals $x_1[n]$, $x_2[n]$ at the input and output of H(z) is $L \times 100$ KHz= 300 KHz. Therefore, the implementation of H(z) must perform 60 multiplications per $\frac{1}{3} \times 10^{-5}$ seconds. If the multiplications are performed parallely, each multiplier has $\frac{1}{3} \times 10^{-5} \approx 3.33 \,\mu s$. If the multiplications are performed serially, each multiplier has $\frac{1}{60} \times \frac{1}{3} \times 10^{-5} \approx 55.56 \, ns$.

(Part b) If the filter is implemented in efficient way using polyphase decomposition, sample rates at the input and output of the filters $R_{ij}(z)$ is $\frac{1}{M} \times 100$ KHz= 25 KHz. If the multiplications are performed parallely, each multiplier has $\frac{1}{25} \times 10^{-3} = 40 \,\mu s$.

(Part c) In the polyphase decomposition, the 60 coefficients of H(z) are split across various polyphase components $R_{i,j}(z)$. Since, each $R_{ij}(z)$ operates at 25 KHz, the total number of multiplications performed per second = $60 \times 25 \times 10^3 = 1.5 \times 10^6$.

If l_{ij} are the number of coefficients in $R_{ij}(z)$, then the number of additions required for one output sample is $l_{ij} - 1$. We also know that $\sum_{i=0}^{2} \sum_{j=0}^{3} l_{ij} = 60$. We also perform 9 additions/sample at the output of $R_{ij}(z)$ s. Therefore, the total number of additions performed per second = $25 \times 10^3 \times \left(\sum_{i=0}^{2} \sum_{j=0}^{3} (l_{ij} - 1) + 9\right) = 25 \times 10^3 \times (60 - 12 + 9) = 1.425 \times 10^6$.

The additions after upsampling by 3 can be avoided because only one out of the three samples to be added will be non-zero. Therefore, these additions are not counted.

(P. P. Vaidyanathan, 4.16)

The given statement is not true. We justify it with a counter example. We have,

$$g(n) = h(2n) \tag{37}$$

Choose a all pass G(z)

$$G(z) = g_0 + g_1 z^{-1} + \dots$$

with

$$\left|G\left(e^{j\omega}\right)\right| = 1.$$

In order to satisfy our given equation we can choose H(z) as follows,

$$\begin{split} H(z) &= g_0 + 0.z^{-1} + g_1 z^{-2} + 0.z^{-3} + \dots \\ &= G\left(z^2\right) \\ \implies H\left(e^{j\omega}\right) &= G\left(e^{2j\omega}\right) \\ \implies \left|H\left(e^{j\omega}\right)\right| &= \left|G\left(e^{2j\omega}\right)\right| = 1. \end{split}$$

Therefore, H(z) is an all pass filter.

We have shown a counter example where H(z) is an all pass filter and g(n) = h(2n) is also an all pass filter and H(z) is not an impluse function.

(P. P. Vaidyanathan, 4.21)

$$H_0(z) = 1 + 2z^{-1} + 4z^{-2} + 2z^{-3} + z^{-4}$$

= $(1 + 4z^{-2} + z^{-4}) + z^{-1} (2 + 2z^{-2})$
 $H_1(z) = H_0(-z) = (1 + 4z^{-2} + z^{-4}) - z^{-1} (2 + 2z^{-2})$

The polyphase components are

$$E_0(z^2) = 1 + 4z^{-2} + z^{-4}$$
$$E_0(z^2) = 2 + 2z^{-2}.$$

$$X_{0}(z) = H_{0}(z) X(z) = \left[\left(1 + 4z^{-2} + z^{-4} \right) + z^{-1} \left(2 + 2z^{-2} \right) \right] X(z)$$

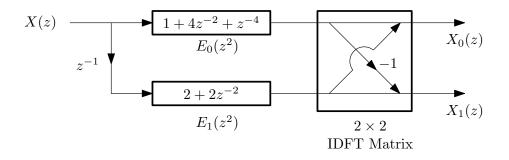
$$X_{1}(z) = H_{1}(z) X(z) = \left[\left(1 + 4z^{-2} + z^{-4} \right) - z^{-1} \left(2 + 2z^{-2} \right) \right] X(z)$$

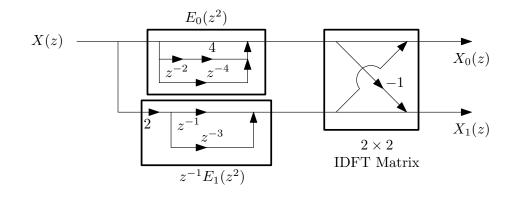
In matrix form,

$$\begin{bmatrix} X_0(z) \\ X_1(z) \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}}_{2 \times 2 \text{ IDFT Matrix}} \begin{bmatrix} (1+4z^{-2}+z^{-4}) \\ z^{-1}(2+2z^{-2}) \end{bmatrix} X(z)$$

The implementation is given in the figure below.

$$X(z) \xrightarrow{H_0(z)} X_0(z)$$





(P. P. Vaidyanathan, 4.27)

$$H_0(z) = \sum_{i=0}^N h_0(i) z^{-i}$$
$$H_k(z) = H(zW^k) = \sum_{i=0}^N h_0(i) (zW^k)^{-i} = \sum_{i=0}^N h_0(i) W^{-ik} z^{-i}$$
$$\implies h_k(i) = h_0(i) W^{-ik}, \quad i = 0, \dots N; \quad k = 0, 1, 2, 3, 4.$$

(Part a) If $h_1(1) = h_0(1)W^{-1}$. Since $h_0(1)$ is real and $W^{-1} = e^{-\frac{j2\pi}{5}}$ is complex, $h_1(1)$ is complex. Therefore, $h_k(n)$, $1 \le k \le 4$ are not all real for all n.

(Part b)

$$\begin{aligned} G_{1}\left(z\right) &= H_{1}\left(z\right) + H_{4}\left(z\right) \\ &= \sum_{i=0}^{N} h_{0}\left(i\right) W^{-i} z^{-i} + \sum_{i=0}^{N} h_{0}\left(i\right) W^{-4i} z^{-i} \\ &= \sum_{i=0}^{N} h_{0}\left(i\right) \left(W^{-i} + W^{-4i}\right) z^{-i} \\ &= \sum_{i=0}^{N} h_{0}\left(i\right) \left(W^{-i} + W^{i}\right) z^{-i} \quad \left(W^{5} = 1 \implies W^{-4i} = W^{5i-4i}\right) \\ &= \sum_{i=0}^{N} h_{0}\left(i\right) \left(e^{-j\frac{2i\pi}{5}} + e^{j\frac{2i\pi}{5}}\right) z^{-i} \\ G_{1}\left(z\right) &= \sum_{i=0}^{N} h_{0}\left(i\right) \cos\left(\frac{2i\pi}{5}\right) z^{-i} \\ &\Longrightarrow g_{1}\left(n\right) = h_{0}\left(n\right) \cos\left(\frac{2\pi}{5}n\right) \end{aligned}$$

$$G_{2}(z) = H_{2}(z) + H_{3}(z)$$

$$= \sum_{i=0}^{N} h_{0}(i) W^{-2i} z^{-i} + \sum_{i=0}^{N} h_{0}(i) W^{-3i} z^{-i}$$

$$= \sum_{i=0}^{N} h_{0}(i) (W^{-2i} + W^{-3i}) z^{-i}$$

$$= \sum_{i=0}^{N} h_{0}(i) (W^{-2i} + W^{2i}) z^{-i} \quad (W^{5} = 1 \implies W^{-3i} = W^{5i-4i})$$

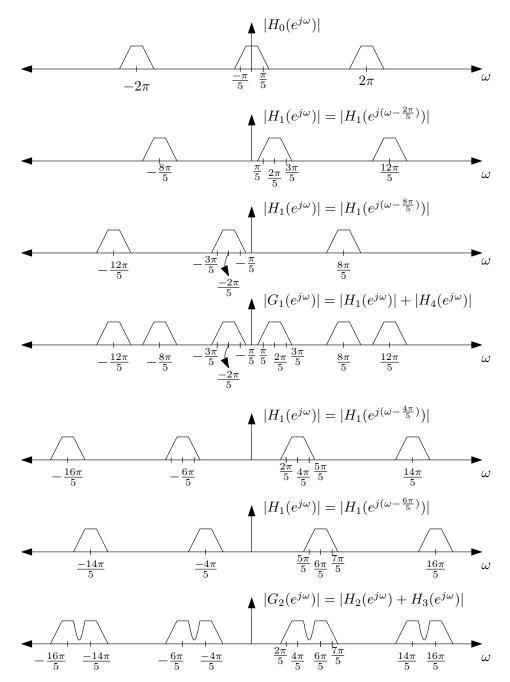
$$= \sum_{i=0}^{N} h_{0}(i) \left(e^{-j\frac{4i\pi}{5}} + e^{j\frac{4i\pi}{5}}\right) z^{-i}$$

$$G_{2}(z) = \sum_{i=0}^{N} h_{0}(i) \cos\left(\frac{4i\pi}{5}\right) z^{-i}$$

$$\implies g_{2}(n) = h_{0}(n) \cos\left(\frac{4\pi}{5}n\right)$$

Therefore, $g_{1}\left(n\right)$ and $g_{2}\left(n\right)$ are all real. (Part c)

 $|G_2(e^{j\omega})|$ need not necessarily look 'good' in the pass band. However, if the phase responses of $H_2(e^{j\omega})$ and $H_3(e^{j\omega})$ are equal in the overlapping regions, the magnitude response $|G_2(e^{j\omega})|$ will be constant in the pass band.



(P. P. Vaidyanathan, 4.28)

Writing the polyphase decomposition of $H_0(z)$:

$$H_0(z) = E_0(z^2) + z^{-1}E_1(z^2)$$
$$H_1(z) = H_0(-z) = E_0(z^2) - z^{-1}E_1(z^2)$$

From the figure, the output signal is

$$\hat{X}(z) = (F_0(z) H_0(z) + F_1(z) H_1(z)) X(z)$$

$$\implies \frac{\hat{X}(z)}{X(z)} = E_0(z^2) (F_0(z) + F_1(z)) + z^{-1} E_1(z^2) (F_0(z) - F_1(z)).$$

(Part a)

$$H_0(z) = 1 + 3z^{-1} + 0.5z^{-2} + z^{-3}$$

$$\implies E_0(z^2) = 1 + 0.5z^{-2}$$

$$z^{-1}E_1(z^2) = 3z^{-1} + z^{-3}$$

$$\hat{X}(z) = (1 + 0.5z^{-2}) (F_0(z) + F_1(z)) + (3z^{-1} + z^{-3}) (F_0(z) - F_1(z))$$

We can choose $F_0(z) = F_1(z) = \frac{1}{2(1+0.5z^{-2})} \implies \frac{\hat{X}(z)}{X(z)} = 1$. Note that $F_0(z)$ and $F_1(z)$ are causal and stable because the poles are located at $\pm j \frac{1}{\sqrt{2}}$ (inside unit circle).

(Part b)

$$H_0(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$$

$$\implies E_0(z^2) = 1 + 3z^{-2} + z^{-4}$$

$$z^{-1}E_1(z^2) = 2(z^{-1} + z^{-3})$$

$$\frac{\hat{X}(z)}{X(z)} = (1 + 3z^{-2} + z^{-4}) (F_0(z) + F_1(z)) + 2(z^{-1} + z^{-3}) (F_0(z) - F_1(z))$$
$$= ((1 + z^{-2})^2 + z^{-2}) (F_0(z) + F_1(z)) + 2z^{-1} (1 + z^{-2}) (F_0(z) - F_1(z))$$

Choose

$$F_0(z) + F_1(z) = z^{-1}$$

$$F_0(z) - F_1(z) = -\frac{1}{2} (1 + z^{-2})$$

$$\implies \frac{\hat{X}(z)}{X(z)} = z^{-1} \left(1 + z^{-2}\right)^2 + z^{-3} - z^{-1} \left(1 + z^{-2}\right)^2 \\ = z^{-3}$$

Therefore, perfect reconstruction is possible with following causal FIR filters:

$$F_0(z) = \frac{1}{4} \left(-1 + z^{-2} \right)$$
$$F_1(z) = \frac{1}{4} \left(1 + 3z^{-2} \right).$$