INDIAN INSTITUTE OF SCIENCE
 E9-252: MATHEMATICAL METHODS AND TECHNIQUES IN SIGNAL PROCESSING HOME WORK \#5 - SOLUTIONS, FALL 2015

INSTRUCTOR: SHAYAN G. SRINIVASA

TEACHING ASSISTANT: CHAITANYA KUMAR MATCHA

Problem 1. 7.2.3 from Moon \& Stirling
Solution. As derived in the class, SVD of \mathbf{A} is

$$
\begin{aligned}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H} & =\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{1} & \underline{0} \\
\underline{0}^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{V}_{1}^{H} \\
\mathbf{V}_{2}^{H}
\end{array}\right] \\
& =\mathbf{U}_{1} \boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{H} \\
\Longrightarrow \mathbf{A}^{H} & =\mathbf{V}_{1} \boldsymbol{\Sigma}_{1}^{T} \mathbf{U}_{1}^{H}
\end{aligned}
$$

From the above equations, the four fundamental sub-spaces related to the matrix \mathbf{A} are a) Range space (column space) of \mathbf{A} :

$$
\begin{aligned}
\mathcal{R}(\mathbf{A}) & =\left\{\mathbf{A} \underline{x} \mid \underline{x} \in \mathbb{C}^{n}\right\} \\
& =\left\{\mathbf{U}_{1} \boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{H} \underline{x} \mid \underline{x} \in \mathbb{C}^{n}\right\} \\
& =\left\{\mathbf{U}_{1} \hat{\hat{x}} \mid \underline{\hat{x}} \in \mathbb{C}^{r}\right\} \\
& =\operatorname{Span}\left(\mathbf{U}_{1}\right)
\end{aligned}
$$

b) Range space (column space) of \mathbf{A}^{H} :

$$
\mathcal{R}\left(\mathbf{A}^{H}\right)=\operatorname{Span}\left(\mathbf{V}_{1}\right)
$$

c) Null space of A: From the theorem proved in the class,

$$
\mathcal{N}(\mathbf{A})=\left[\mathcal{R}\left(\mathbf{A}^{H}\right)\right]^{\perp}=\operatorname{Span}\left(\mathbf{V}_{2}\right)
$$

b) Null space of \mathbf{A}^{H} : From the theorem proved in the class,

$$
\mathcal{N}\left(\mathbf{A}^{H}\right)=[\mathcal{R}(\mathbf{A})]^{\perp}=\operatorname{Span}\left(\mathbf{U}_{2}\right)
$$

Problem 2. 7.2.4 from Moon \& Stirling
Solution. Given

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 5 & 6 \\
6 & 7 & 2 & 1
\end{array}\right], \quad \underline{b}=\left[\begin{array}{l}
48 \\
30
\end{array}\right] .
$$

We need to find least square solution for $\mathbf{A} \underline{x}=\underline{b}$.
Since rank of \mathbf{A} is $2, \underline{b}$ lies in $\mathcal{R}(\mathbf{A})$. Therefore, the projection of \underline{b} onto $\mathcal{R}(\mathbf{A})$ is \underline{b} itself.
The SVD of \mathbf{A} is

$$
\mathbf{A}=\underbrace{\left[\begin{array}{cc}
0.6636 & 0.7480 \\
0.7840 & -0.6636
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
11.5913 & 0 & 0 & 0 \\
0 & 5.8001 & 0 & 0
\end{array}\right]}_{\boldsymbol{\Sigma}} \underbrace{\left[\begin{array}{cccc}
0.4445 & 0.6808 & 0.4153 & 0.4081 \\
-0.5575 & -0.2851 & 0.4160 & 0.6954 \\
0.4661 & -0.3267 & -0.5573 & 0.6045 \\
0.5237 & -0.5904 & 0.5864 & -0.1823
\end{array}\right]}_{\mathbf{V}^{H}}
$$

The least squares inverse is

$$
\begin{gathered}
\mathbf{A}^{\dagger}=\mathbf{V} \boldsymbol{\Sigma}^{\dagger} \mathbf{U}^{H} \\
\boldsymbol{\Sigma}^{\dagger}=\left[\begin{array}{cc}
\frac{1}{11.5913} & 0 \\
0 & \frac{1}{5.8001} \\
0 & 0 \\
0 & 0
\end{array}\right] . \\
\mathbf{A}^{\dagger}=\left[\begin{array}{cc}
-0.0465 & 0.0925 \\
0.0022 & 0.0765 \\
0.0774 & -0.0208 \\
0.1084 & -0.0491
\end{array}\right] .
\end{gathered}
$$

where

The least square solution is

$$
\underline{\hat{x}}=\mathbf{A}^{\dagger} \underline{b}=\left[\begin{array}{l}
0.5442 \\
2.4027 \\
3.0929 \\
3.7301
\end{array}\right]
$$

The l_{2} norm of the solution is

$$
\|\underline{\hat{x}}\|=5.4359<5.4772=\left\|\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]\right\|
$$

Since the equation $\mathbf{A} \underline{x}=\underline{b}$ has infinite solutions, a constraint is generally enforced to identify a suitable unique solution. The choice of this constraint on the solution depends on the problem:

A least squares solution is desired if the samples in \underline{b} are erroneous.

Problem 3. 7.7.13 from Moon \& Stirling
Solution. We have $\underline{y} \in \mathcal{R}(\tilde{\mathbf{V}})$ with $y_{m+1}=-1$ and $\underline{x}=\underline{\tilde{\mathbf{I}}} \underline{y}$ where

$$
\tilde{\mathbf{I}}=\left[\begin{array}{ll}
\mathbf{I}_{m} & \underline{0} \\
\underline{0}^{T} & 0
\end{array}\right] .
$$

Let the dimension of $\tilde{\mathbf{V}}$ is $(m+1) \times p . p$ is the number of times the smallest singular value of \mathbf{A} is repeated. We can write $y=\tilde{\mathbf{V}} \underline{a}$ where \underline{a} is vector whose dimension is p.
Our goal is to find \underline{y} i.e., to find \underline{a} such that
a) $\|\underline{x}\|^{2}=\|\tilde{\tilde{\mathbf{I}}} \underline{y}\|^{2}$ is minimized
b) the constraint $y_{m+1}=-1$ is satisfied i.e., $\underline{u}^{T} \underline{y}+1=0$ where

$$
\underline{u}^{T}=\left[\begin{array}{lllll}
0 & \cdots & 0 & 0 & 1
\end{array}\right]_{1 \times(m+1)} .
$$

We solve this problem using Lagrange multiplier λ by minimizing the cost function given by

$$
\begin{align*}
C(\underline{a}, \lambda)= & \|\tilde{\mathbf{I}} \underline{\tilde{y}}\|^{2}+2 \lambda\left(\underline{u}^{T} \underline{y}+1\right) \\
= & \|\tilde{\mathbf{I}} \tilde{\mathbf{V}} \underline{a}\|^{2}+2 \lambda\left(\underline{u}^{T} \tilde{\mathbf{V}} \underline{a}+1\right) \\
= & (\tilde{\mathbf{I}} \tilde{\mathbf{V}} \underline{a})^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}} \underline{a}+2 \lambda\left(\underline{u}^{T} \tilde{\mathbf{V}} \underline{a}+1\right) \\
= & \underline{a}^{H} \tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}} \underline{a}+2 \lambda\left(\underline{u}^{T} \tilde{\mathbf{V}} \underline{a}+1\right) \\
= & \underline{a}^{H} \tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}} \underline{a}+2 \lambda\left(\underline{u}^{T} \tilde{\mathbf{V}} \underline{a}+1\right) \quad\left(\tilde{\mathbf{I}}^{H} \tilde{\mathbf{I}}=\tilde{\mathbf{I}}\right) \\
& \frac{\partial C}{\partial \underline{a}^{H}}=2 \tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}} \underline{a}+2 \lambda \tilde{\mathbf{V}}^{H} \underline{u}=\underline{0} . \tag{1}\\
& \frac{\partial C}{\partial \lambda}=\underline{u}^{T} \tilde{\mathbf{V}} \underline{a}+1=0 . \tag{2}
\end{align*}
$$

From (1), we have

$$
\begin{align*}
\tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}} \underline{a} & =-\lambda \tilde{\mathbf{V}}^{H} \underline{u} \\
\Longrightarrow \underline{a} & =-\lambda\left(\tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}}\right)^{-1} \tilde{\mathbf{V}}^{H} \underline{u} \tag{3}
\end{align*}
$$

Using (3) in (2), we have

$$
\left.\begin{array}{rl}
\lambda \underline{u}^{T}\left(\tilde{\mathbf{V}}\left(\tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}}\right)^{-1} \tilde{\mathbf{V}}^{H}\right) \underline{u} & =1 \\
\Longrightarrow \lambda & \left.\left.=\frac{1}{\underline{u}^{T}(\tilde{\mathbf{V}}(\tilde{\mathbf{V}}}{ }^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}}\right)^{-1} \tilde{\mathbf{V}}^{H}\right) \underline{u} \\
& \Longrightarrow \underline{a}
\end{array}\right)=-\frac{\left(\tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}}\right)^{-1} \tilde{\mathbf{V}}^{H} \underline{u}}{\underline{u}^{T}\left(\tilde{\mathbf{V}}\left(\tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}}\right)^{-1} \tilde{\mathbf{V}}^{H}\right) \underline{u}} .
$$

Therefore, the desired solution is

$$
\underline{y}=\tilde{\mathbf{V}} \underline{a}=-\frac{\tilde{\mathbf{V}}\left(\tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}}\right)^{-1} \tilde{\mathbf{V}}^{H} \underline{u}}{\underline{u}^{T}\left(\tilde{\mathbf{V}}\left(\tilde{\mathbf{V}}^{H} \tilde{\mathbf{I}} \tilde{\mathbf{V}}\right)^{-1} \tilde{\mathbf{V}}^{H}\right) \underline{u}}
$$

