Indian Institute of Science

E9-252: Mathematical Methods and Techniques in Signal Processing
 Instructor: Shayan G. Srinivasa
 Home Work \#3, Fall 2015

Late submission policy: Points scored $=$ Correct points scored $\times e^{-d}, d=$ \# days late

Problem 1: If \mathcal{V} and \mathcal{W} are finite dimensional orthogonal subspaces of an inner product space \mathcal{H}, prove that $\operatorname{dim}(\mathcal{V} \oplus \mathcal{W})=\operatorname{dim}(\mathcal{V})+\operatorname{dim}(\mathcal{W})$.
Problem 2: Obtain the Haar wavelet decomposition of the signal $f(t)$. Indicate the signal dimension at each subspace carefully. Devise a generic algorithm for doing a Haar decomposition using a computer program.

$$
f(t)=\left\{\begin{array}{lr}
2 & -2 \leq t<-1 \tag{12pts.}\\
-4 & -1 \leq t<-0.5 \\
-2 & -0.5 \leq t<0 \\
2 & 0 \leq t<0.25 \\
1 & 0.25 \leq t<2
\end{array}\right.
$$

Problem 3: Prove the following properties for Haar wavelets:

- Parseval's equality i.e., energy conservation relation.
- Orthogonality across scales and time translates.

Problem 4: For $j \in \mathbb{Z}$, let \mathcal{V}_{j} be the space of all signals $f(t) \in L^{2}$ bandlimited within the interval $\left[-2^{j} \pi, 2^{j} \pi\right]$. Consider the signal $\phi(t):=\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}$. Prove the following.

- The nesting, closure, shrinking and scaling properties that we discussed in the class as part of the multiresolution analysis definition.
- $\{\phi(t-k), k \in \mathbb{Z}\}$ is a shift orthogonal basis for \mathcal{V}_{0}.
- $\phi(t)=\phi(2 t)+\sum_{k \in \mathbb{Z}} \frac{2(-1)^{k}}{(2 k+1) \pi} \phi(2 t-2 k-1)$. (Scaling relation)
(25 pts.)

