Indian Institute of Science

E9-252: Mathematical Methods and Techniques in Signal Processing

Instructor: Shayan G. Srinivasa

Home Work #3, Fall 2015

Late submission policy: Points scored = Correct points scored $\times e^{-d}$, d = # days late

Assigned date: Oct. 22nd 2015

Due date: Oct. 30th 2015

PROBLEM 1: If \mathcal{V} and \mathcal{W} are finite dimensional orthogonal subspaces of an inner product space \mathcal{H} , prove that $\dim(\mathcal{V} \oplus \mathcal{W}) = \dim(\mathcal{V}) + \dim(\mathcal{W})$. (3 pts.)

PROBLEM 2: Obtain the Haar wavelet decomposition of the signal f(t). Indicate the signal dimension at each subspace carefully. Devise a generic algorithm for doing a Haar decomposition using a computer program.

$$f(t) = \begin{cases} 2 & -2 \le t < -1 \\ -4 & -1 \le t < -0.5 \\ -2 & -0.5 \le t < 0 \\ 2 & 0 \le t < 0.25 \\ 1 & 0.25 \le t < 2 \end{cases}$$
(12 pts.)

PROBLEM 3: Prove the following properties for Haar wavelets:

- Parseval's equality i.e., energy conservation relation.
- Orthogonality across scales and time translates.

(10 pts.)

PROBLEM 4: For $j \in \mathbb{Z}$, let \mathcal{V}_j be the space of all signals $f(t) \in L^2$ bandlimited within the interval $\left[-2^j \pi, 2^j \pi\right]$. Consider the signal $\phi(t) := \operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$. Prove the following.

- The nesting, closure, shrinking and scaling properties that we discussed in the class as part of the multiresolution analysis definition.
- $\{\phi(t-k), k \in \mathbb{Z}\}$ is a shift orthogonal basis for \mathcal{V}_0 .
- $\phi(t) = \phi(2t) + \sum_{k \in \mathbb{Z}} \frac{2(-1)^k}{(2k+1)\pi} \phi(2t-2k-1)$. (Scaling relation)

(25 pts.)