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Problem 1. If V and W are finite dimensional orthogonal subspaces of an inner product space H, prove that
dim (V& W) = dim (V) + dim (W) .

Solution. Let dim (V) = d, and dim (W) = d,,. There exists a set of d, vectors {yl,y2,~~~ ,ydv} that

form an orthogonal basis for V. Similarly, we can find a set of d, vectors {yl,MQ, e ,@du} that form
an orthogonal basis for W. Since the V and W are orthogonal subspaces, the orthogonal basis vectors to
{yl, Vgt Vg, Wy, Wa, " * ,wdv} are all orthogonal to each other. Therefore, they all are linearly independent.

Any vector in VW can be represented as a linear combination of two vectors v and w wherev € V and w € V.
Since any vector in each of the subspaces can be represented as a linear combination of orthogonal basis vectors,

any vector in V& W can be represented as a linear combination of vectors in {yl, Ugy '+t 5 Vg, Wy, Wyt Wy }
Therefore, the set of vectors {Ql,QQ, T g s Wy, Wy ,wdv} form an orthogonal basis for V & W.
Therefore,

dim (V@ W) =dy + dy = dim (V) + dim (W) .
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Problem 2. Obtain the Haar wavelet decomposition of the signal f (¢). Indicate the signal dimension at each
subspace carefully. Devise a generic algorithm for doing Haar decomposition using a computer program.
2 —2<t< -1
-4 —-1<t<-05
f)=¢-2 —-05<t<0
2 0<t<0.25
1 025 <t <2

Solution. The Haar wavelet decomposition of the signal is a(® = (2,-3,1.25,1), b, = (0,—1,0.25,0), b, =
(0,0,0,0,0.5,0,0,0).

Dimension of the signal in Vy is 4, in V; is 8 and in Vs is 16. The coefficients of Haar wavelet and scaling
function in different subspaces are given below.

L a [k=—8[-7]-6[-5[-4]-3[-2[-1] 0o [1]2[3]4]5]6]7]
j=2] 2 2 122 4]4]2[=2] 2 |1 T[1[1]1]1
i=1 2 | 4] 2] 2151 1
i=0 2 | 3 1251

o) [k=—a[-3]-2[-1] 0 [1][2]3]

j=1] 0 0]0]0]05[0[0]0

i=0 0 |-1]025]0

TABLE 1. Coefficients of Haar wavelets and scaling function in different subspaces.

Figure 1 shows the decomposition of f (t) as vg (t) + wo (¢) + w1 (¢).

f(t)
°
x0)
°
wt)
°
w,(t)
°

22 E 0 1 2 22 -1 0 1 2 22 -1 0 1 2 22 - [) 1 2

t — t + t -+ t
(a) f(t) (B) vo (t) (c) wo (t) (p) w1 ()

FIGURE 1. Haar decomposition of f (t) as v (t) + wp (t) + w1 ().

MATLAB code for wavelet decomposition is given below. The code uses the following relations that were
derived in the class:

(5) )

(-1 O tagp,

ay; = ==
2

() (4)

pU-1 _ 3k gk
k N 2

%% Signal Representation and Properties %%

intervals = | -2, -1, —0.5, 0, 0.25, 2];
vals = | 2, —4, -2, 2, 1];

num intervals = length (intervals) — 1;
resolution = 0.25;

duration = intervals (end) — intervals (1);
num _decompositions = —log2 (resolution);

signal dim = duration/resolution ;

space _resolution = (0.5)."(0:num_decompositions);

a = zeros (num_decompositions + 1, signal dim);

b = zeros(num_decompositions, signal dim);
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%% Signal representation using Haar scaling function %%
j=1;
for i=1:(signal_ dim)
end time = intervals(l) + resolutionx*i;
if end_ time <= intervals (j+1)
a(l, i) = vals(j);
else
=i+ 1
a(l, i) = vals(j);
end
end
a(l,end) = vals(end);
%% Haar Wavelet Decomposition %%
for i=1: (num decompositions)
a(i+1,1:(signal dim/2)) = (a(i,1l:2:signal dim) + a(i,
b (i (51gna1 dim /2)) = (a(i,1:2:signal_dim) — a(i,
end
%% Plotting the projections %%
space resolution — resolution;
space dim — signal dim;
for i=1:(num_decompositions+1)
X = zeros (1,space dim*2);
Y = zeros(l,spacegdim*2);
X(1:2:end) = intervals(l) + (0:(space_dim—1))*space
X(2:2:end) = intervals(l) + (l:space dim)#*space
Y(1:2:end) = a(i, l:space dim);
Y(2:2:end) = a(i, l:space dim);

plot (X,Y);
_resolution

space = 2xspace _

space_dim = space_dim /2;

end

%% Plotting the wavelet
space_resolution = resolution;
space _dim = signal dim /2;

for i=1:(num_decompositions)

grid on; ylim ([—5,5]);

figure ;

resolution ;

decompositions %%

= intervals (1) + (0:(2*space dim—1))*space
:(2xspace_dim))*space _

figure ;

resolution ;

X = zeros (1,space dim=x4);

= zeros (1,space dimx*4);
X(1:2:end)
X(2:2:end) = intervals (1) + (1
Y(l:4:end) = b(i, l:space dim);
Y(2:4:end) = b(i, l:space_dim);
Y(3:4:end) = —b(i, l:space dim);
Y(4:4:end) = —b(i, l:space dim);
plot (X,Y); grid on; ylim([—5,5]);
space resolution = 2%space
space_dim = space dim /2;

end

2:2:signal
2:2:signal

resolution ;

resolution ;

resolution ;

resolution ;

dim)) /2;
dim)) /2;



Problem 3. Prove the following properties for Haar wavelets:

e Parseval’s equality i.e., energy conservation relation.
e Orthogonality across scales and time translates.

Solution. Orthogonality across scales and time translates

We have the Haar wavelet
1, 0<t<jy

Yt)=q-1, 3<t<1
0 otherwise.
The scaled and shifted versions are
1, k2I<t<(k+3)279
Y (2t—k) =<1, (k+3)279 <t<(k+1)27
0 otherwise.

Shift orthogonality: For k # I, [k277, (k+1)277) and [I277, (I 4+ 1) 277) are non-overlapping regions. There-

fore,

(¥ (2t —k), v (2t=1)) =0 k#Il

(k+1)277
(6 (2t — k) o (20— k) = / Ldt = 279,
k2-d
Orthogonality across scales: Without loss of generality let, p > ¢ be two different scales. Therefore, 1) (2Pt — k)

has a smaller support than ¢ (29 — ) i.e., 27P < 279. Notice
1) ¢ (29¢ — 1) is constant in each of the intervals (m2=*V (m + 1)2=+D) 'm € Z.
2) For p > ¢, any interval (n27?, (n + 1) 27P) ,n € Z is a proper subset of the interval (m2~(+1) (m 4 1) 2~ (@+D)

where m = Ln2q+1_pJ )

Therefore,
(k+3)277 (k+1)277
/ (2Pt — k) (2% — 1) d / W (2Pt — k) (20 — 1) dt
k2—p
(k+3)277 (k+1)277
— (2Pt — k), (2% — 1)) = / b (29 — 1) dt — / b (29 — 1) dt
k2P (k+%)2—
= 0

Therefore, the scales and time translates of Haar wavelets {1/) (2j — k) keZ,7=0,1,--- } are all orthogonal

to each other.

Parseval’s equality
Let f(t) € L' (R). From the class notes, the wavelet decomposition of the function is given by

f(t) =0 ij (1)

where
wt) = Y alet—k) eV
k=—o00
vi(t) = D b2y (27t — k) e W
k=—o0

and the coefficients a,(C ) and b(J ) are obtained by projecting f (¢) onto the orthonormal basis of Vo, Wy, W1, Wa - - -,

o = (f(t),(t— k),
b = (F0), 27 (27t -k)).
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Our aim is to prove that the energy in the signal is equal to the sum of square of the wavelet coefficients
{ © 0 kez, j= 0,1,.--} ie.,

/|f<t>|2dt= > ot o +Z > [l

k=— =0 k=—o0

The subspaces Vo, Wy, Wi, - - - are all orthogonal to each other. Therefore,

(v (t),w; (1)) = 0, j=0,1,2
<wj(t)awk(t)> = Oa ]#k
Therefore,
(vo (t), (1) = (vo(t),vo(t)>+z<vo(t)7wj (t)) = (vo () ,vo (t))
j=0
(w; (t), (1) = <wj(t)7UO(t)>+Z<wj () wj () = (w; (1), w; (¢))
§=0
Hence,
[ 17 OF =5 0.7 0) = (oo 6), 0 () + 3 Gy (1), 5 1) @)
—00 =0
Consider
(vo (t) 00 (1)) = <Z oo (t—k), Y a§°>¢<t—n>
k=—o00 l=—00
= Z Za?f’al(“ (t—k), o (t—1))
k=—ocol=—0c0
o S LT SRl ®)
k=—oc0l=—00 k=—o0
Similarly,

(w; () w; (1)) = < S b2 (20 k), S BP0y (gjtz)>

k=—o0 l=—0

= Y3 W (29 (27— k) 22y (2t - 1))
k=—occ l=—00

= > > =Y ] (4)
k=—ocol=—0c0 k=—o0

From (2), (3) and (4), we have the Parseval’s equality

7|f(t)|2dt ]a,(f’] =S Z o[

J=0 k=
]

Remark:

e Notice that the Parseval’s equality is same as the following result that we have proved for inner product
spaces: If {v;,vq,--+} form orthonormal basis for an inner product space V and a vector v € V is
o0
written as v = Y, apvy, then

k=1
00

|y|2 = <Qay> = Z |ak|2.

k=1



Problem 4. For j € Z, let V; be the space of all signals f (t) € L? bandlimited within the interval [—2j7r, Qjﬂ .

Consider the signal ¢ (t) := sinc (t) = w Prove the following.

e The nesting, closure, shrinking and scaling properties that we discussed in the class as part of the
multiresolution analysis definition.
o {¢p(t—k),k €Z} is a shift orthogonal basis for V.

o H(t)=¢(2t)+ > %¢ (2t — 2k — 1) . (Scaling relation)
kez

Solution. Part 1

Nesting property: If f(t) € V;, then f(t) is bandlimited within the interval [-2im, 2i7] = f(t) is
bandlimited within the interval [—2/T1x, 20t1x] = f(t) € V;11. Therefore, V; C Vjy1, j = 0,1,---.
Therefore

VoCVi CVyCV3---

Scaling property: If f(t) € V;, then f(t) is bandlimited within the interval [—2im, 2i7| = f(2t) is
bandlimited within the interval [-2/17, 2/t x| — f(2t) € V;41. Therefore, {f (2t) | f (t) € V;} € Vj41.

Similarly, if f(f) € Vj41, then f(t) is bandlimited within the interval [—2/Tlm 20Hx] — f () is
bandlimited within the interval [-2/m, 27| = f (%) € V;. Therefore, V; D {f (3) | f(t) € Via} =
{F @O f@{) Vi 2V

Therefore, we have {f (2t) | f (t) € V;} = Vjt1.

Shrinking property: Signals in V_; are bandlimited within the interval [-27J7,2797| for j > 0. Therefore,
signals in (7] V; will have only a d.c. component in the signal. The only square integrable d.c. signal is f (¢t) = 0.

JEZ
Therefore, (| V; = {0}.
JEZL

Closure property: Let f (t) € L? (R) be any function in L? space. Consider its Fourier transform F (w). Let

f;j (t) be the projection of f (t) onto V;. Then its Fourier transform is

SR i
For the closure property, we need to show that lgrolo fi (t) = f(t) in L? sense.
Split the frequencies into disjoint intervals given]by I; = [-27U+Dqg 2=0HD7]\ [-2797,2707) ,j = 1,2,
and Iy = [—7,7]. We have G I; = [-2= WD 2=(N+D7] and G I; =R.

Jj=0 j=0
Let E be the energy in the signal f (). Using Parseval’s theorem, we have

E= / If () dt = / F (W) dw =" / |F (w)]? dw. (5)
-0 —o0 j:OwGIj
Let E; be the energy of the signal in the frequencies I; i.e.,
Ej: / |F(w)|2dw7 j:0a1727"'
welj;

Then, the equation (5) can be written as

E_iEj

7=0
N
= [lim (B ZO Ej| = 0. (. Eis finite) (6)
=
N
Notice that ) E; is the energy of the signal f (t) within the frequencies [—2_(N+1)7r, 2_(N+1)ﬂ. Therefore,
§=0

N

> E;is the energy in Fy 41 (w). Therefore, <E - Z;VZO Ej) is the energy in F' (w)—Fy11 (w) (= f ()= fvy1 ()
=0

in the time-domain). From equation (6),

i / F(8) = faas (O dE = 0
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= lim fy(t) = f(t) (in L? sense)

N—o0

N N
Hence, any function in L? (R) can be represented within |J V;. Therefore, V; = L? (R).
=0 =0
Part 2: ’ ’
We need to prove that
a) {¢(t — k), k € Z} are orthogonal and
b) {¢(t — k), k € Z} form basis for V,
To prove that {¢ (t — k), k € Z} are orthogonal, consider the inner product between ¢ (t — k) and ¢ (t — 1)
for k # 1,

oo o0

/¢>(t—k)¢(t—l) /Sin(ﬂ'(t—k))sin(ﬂ(t—l))dt

m(t—k) m(t—1)

—0oQ

_ /(_1)’“:2(_7”2) (_1)ljz(ftl))dt (sin (¢ — n) = (~1)"sin (1))

— 0o

(e 7<sin2 () sin® (ms)) »

(k1) . —k =1
(=) T sin? (r (t— R))
= 7r2(k—l)/ T

(-1)"** / sin? (m (t — 1))

(sin® (t — nm) = sin® (t))

w2 (k—1) t—1
. I+k oo 2
= 7r(2 (2_ ) / i t(ﬂ) dt (Change of variables t — k — t)

(—1)'tF 7 sin? (mt)
w2 (k—1) / gt

— 00

(Change of variables t — [ — t)

|
o

/¢<t—k>¢<t—z>

Proving that {¢ (t — k) , k € Z} form basis for V, following from Nyquist sampling theorem. Any bandlimited
signal can be sampled at Nyquist rate without loosing any information. The original signal can be constructed
from the samples using “sinc-interpolation”.

Consider any signal f (t) € Vo that is bandlimited to [—,7]. The Nyquist rate is 2 x 5= = Isamp/sec. The
sampled signal is

Fo®) =D F (k)6 (t—F).
keZ

If F (w) is the Fourier transform of f (¢), then the Fourier transform of f (¢) is same as F (w) repeated at 27
intervals. Therefore, the signal f (¢) can be obtained from f; (¢) by using an ideal low pass filter bandlimited to

[, 7. In time-domain, this filter is given by ¢ (t) = 2 Therefore,
f) = fj fot =) ()
-y S 18503 -K)90)
= gﬂk) i 8(t—k—4)¢ )
f@) = k:%f(k);(:k) (@(t) % (t—k) = (t—Fk))

Therefore, any function in Vy can be represented as a linear combination of {¢ (t — k), k € Z}.
Hence, {¢ (t — k), k € Z} form orthogonal basis for V.
7



Part 3

—5m -3 -7 0 m 3m 5
FIGURE 2. Filtering ¢ (2t) by this filter H (w) results in ¢ (t)
¢ (t) is an ideal low pass filter band limited to [—m, 7r|. Its scale ¢ (2t) an ideal low pass filter band limited

to [—2m,27]. ¢ (t) can be obtained from ¢ (2t) by passing through a filter & (t) whose frequency response is as
shown in Figure 2. The signal h (¢) is given by (derivation for this is given later)

2(—-1)"
h(t):é(t)+zm6(tf2k—l). (7)
kEZ
Therefore,
¢(t) = h(t)xo(2t)
k
= 6()x9(2t) +ZM6(:§—2/¢— 1) % ¢ (2t)
kEZ
k
o) = ¢(2t)+z(22k(+11))7r¢(2t—2k— 1)

keZ

Proof for equation (7):
The frequency response in Figure 2, is an even periodic function with period 27. Therefore, we can write the
frequency response as

o0
w
Hw) = ag+ nz_:lancos (n§> ,
where, ag = /H(w) dw =27

™

- /H(w)cos(n%)dw

- /cos @g) dw

- 0 n is even
DAy, n=2k+1is 0dd

Therefore,
H(w) = 27r+§0(—1)’“ Qkilcos ((2k+1)%)
_ 2W+I§)(_1)k2k2ﬂ(e]‘(2k+l)g’+ej(2k+1)‘§’)
— W) = 6(t)+§(1)kw(6(t2k1)+5(t+2k+1))
_ 6(t)+§( 1)’“M5(t—2k—1)+§(—1)’fmekﬂ)
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o0

1

5(t)+’;(71)k mmf%q)

+ > (= (2(_1_11)+1)7r6(t+2(—l—1)—|—1)

l=—00

-1

6(t)+§:(_1)’“ %5@—%—1” S (=)= 2

= (2k+1) (2l+1)7r5(t_21_ 1

l=—00
51+ (-1 ﬁé(t—%— Dt Y () ﬁa(t_zz_ 1)

k= l=—00

0
5(t) + k;m (—1)* ﬁ(s (t— 2% — 1)



