INDIAN INSTITUTE OF SCIENCE

E9-252: MATHEMATICAL METHODS AND TECHNIQUES IN SIGNAL PROCESSING HOME WORK #3 - SOLUTIONS, FALL 2015

INSTRUCTOR: SHAYAN G. SRINIVASA
TEACHING ASSISTANT: CHAITANYA KUMAR MATCHA

Problem 1. If \mathcal{V} and \mathcal{W} are finite dimensional orthogonal subspaces of an inner product space \mathcal{H} , prove that $\dim(\mathcal{V}\oplus\mathcal{W})=\dim(\mathcal{V})+\dim(\mathcal{W})$.

Solution. Let $\dim(\mathcal{V}) = d_v$ and $\dim(\mathcal{W}) = d_w$. There exists a set of d_v vectors $\{\underline{v}_1, \underline{v}_2, \cdots, \underline{v}_{d_v}\}$ that form an orthogonal basis for \mathcal{V} . Similarly, we can find a set of d_w vectors $\{\underline{w}_1, \underline{w}_2, \cdots, \underline{w}_{d_v}\}$ that form an orthogonal basis for \mathcal{W} . Since the \mathcal{V} and \mathcal{W} are orthogonal subspaces, the orthogonal basis vectors to $\{\underline{v}_1, \underline{v}_2, \cdots, \underline{v}_{d_v}, \underline{w}_1, \underline{w}_2, \cdots, \underline{w}_{d_v}\}$ are all orthogonal to each other. Therefore, they all are linearly independent. Any vector in $\mathcal{V} \oplus \mathcal{W}$ can be represented as a linear combination of two vectors \underline{v} and \underline{w} where $\underline{v} \in \mathcal{V}$ and $\underline{w} \in \mathcal{V}$. Since any vector in each of the subspaces can be represented as a linear combination of orthogonal basis vectors, any vector in $\mathcal{V} \oplus \mathcal{W}$ can be represented as a linear combination of vectors in $\{\underline{v}_1, \underline{v}_2, \cdots, \underline{v}_{d_v}, \underline{w}_1, \underline{w}_2, \cdots, \underline{w}_{d_v}\}$. Therefore, the set of vectors $\{\underline{v}_1, \underline{v}_2, \cdots, \underline{v}_{d_v}, \underline{w}_1, \underline{w}_2, \cdots, \underline{w}_{d_v}\}$ form an orthogonal basis for $\mathcal{V} \oplus \mathcal{W}$.

Therefore,

$$\dim (\mathcal{V} \oplus \mathcal{W}) = d_v + d_w = \dim (\mathcal{V}) + \dim (\mathcal{W}).$$

Problem 2. Obtain the Haar wavelet decomposition of the signal f(t). Indicate the signal dimension at each subspace carefully. Devise a generic algorithm for doing Haar decomposition using a computer program.

$$f(t) = \begin{cases} 2 & -2 \le t < -1 \\ -4 & -1 \le t < -0.5 \\ -2 & -0.5 \le t < 0 \\ 2 & 0 \le t < 0.25 \\ 1 & 0.25 \le t \le 2 \end{cases}$$

Solution. The Haar wavelet decomposition of the signal is $\underline{a}^{(0)} = (2, -3, 1.25, 1), \underline{b}_0 = (0, -1, 0.25, 0), \underline{b}_1 =$ (0, 0, 0, 0, 0.5, 0, 0, 0).

Dimension of the signal in V_0 is 4, in V_1 is 8 and in V_2 is 16. The coefficients of Haar wavelet and scaling function in different subspaces are given below.

$a_k^{(j)}$	k = -8	-7	-6	-5	-4	-3	-2	-1	0]	2	3	4	5	6	7
j=2	2	2	2	2	-4	-4	-2	-2	2	1	1	1	1	1	1	1
j = 1					2	-4	-2	-2	1.5	1	1	1				
j = 0							2	-3	1.25	5 1						
		$b_k^{(j)}$	k	k = -4		3 -2	-2)]	. 2	3					
		j=1		0		0	0	0.	5 () (0					
		j =	0			0	-1	0.2	25 ()]				

Table 1. Coefficients of Haar wavelets and scaling function in different subspaces.

Figure 1 shows the decomposition of f(t) as $v_0(t) + w_0(t) + w_1(t)$.

FIGURE 1. Haar decomposition of f(t) as $v_0(t) + w_0(t) + w_1(t)$.

MATLAB code for wavelet decomposition is given below. The code uses the following relations that were derived in the class:

$$a_k^{(j-1)} = \frac{a_{2k}^{(j)} + a_{2k+1}^{(j)}}{2}$$
$$b_k^{(j-1)} = \frac{a_{2k}^{(j)} - a_{2k+1}^{(j)}}{2}$$

```
M Signal Representation and Properties M
   intervals = \begin{bmatrix} -2, & -1, & -0.5, & 0, & 0.25, \\ vals & = \begin{bmatrix} 2, & -4, & -2, & 2, & 1\end{bmatrix};
2
3
                          = length(intervals) - 1;
   num intervals
5
                          = 0.25;
   resolution\\
6
                          = intervals(end) - intervals(1);
   duration
   num decompositions = -\log 2 (resolution);
                           = duration/resolution;
9
10
   space resolution = (0.5). (0:num decompositions);
   a = zeros(num_decompositions + 1, signal_dim);
   b = zeros (num decompositions, signal dim);
```

```
14
   %% Signal representation using Haar scaling function %%
15
   j = 1;
16
   for i=1:(signal dim)
17
        end time = intervals(1) + resolution*i;
18
        if end time <= intervals(j+1)
19
            a(1, i) = vals(j);
20
        else
21
            j = j + 1;
22
            a(1, i) = vals(j);
23
        end
24
25
   end
26
   a(1, end) = vals(end);
27
28
   M Haar Wavelet Decomposition %%
29
   for i =1:(num decompositions)
30
        a\,(\,i\,+1\,,1:(\,signal\_dim\,/\,2)\,)\,\,=\,\,\left(\,a\,(\,i\,\,,1\,:\,2\,:\,signal\_dim\,)\,\,+\,\,a\,(\,i\,\,,\,\,\,2\,:\,2\,:\,signal\_dim\,)\,\right)/2\,;
31
       b(i,1:(signal_dim/2)) = (a(i,1:2:signal_dim) - a(i,2:2:signal_dim))/2;
32
33
   end
34
35
   %% Plotting the projections %%
36
   space resolution = resolution;
37
                       = signal dim;
   space dim
38
   for i = 1: (num\_decompositions + 1)
39
       X = zeros(1, space dim*2);
40
       Y = zeros(1, space dim*2);
41
       X(1:2:end) = intervals(1) + (0:(space dim-1))*space resolution;
42
       X(2:2:end) = intervals(1) + (1:space_dim)*space_resolution;
43
       Y(1:2:end) = a(i, 1:space_dim);
44
       Y(2:2:end) = a(i, 1:space dim);
45
        plot (X,Y); grid on; ylim ([-5,5]); figure;
46
        space resolution = 2*space resolution;
47
        space \dim = \operatorname{space } \dim /2;
48
   end
49
50
51
   % Plotting the wavelet decompositions %
52
   space resolution = resolution;
53
   space dim
                      = signal dim /2;
54
   for i=1:(num decompositions)
55
       X = zeros(1, space dim*4);
56
       Y = zeros(1, space dim*4);
57
       X(1:2:end) = intervals(1) + (0:(2*space dim-1))*space resolution;
58
       X(2:2:end) = intervals(1) + (1:(2*space dim))*space resolution;
59
       Y(1:4:end) = b(i, 1:space dim);
60
       Y(2:4:end) = b(i, 1:space dim);
61
       Y(3:4:end) = -b(i, 1:space_dim);
62
       Y(4:4:end) = -b(i, 1:space dim);
63
        plot (X,Y); grid on; ylim ([-5,5]); figure;
64
        space\_resolution = 2*space\_resolution;
65
66
        space \dim = \operatorname{space } \dim /2;
   end
67
```

Problem 3. Prove the following properties for Haar wavelets:

- Parseval's equality i.e., energy conservation relation.
- Orthogonality across scales and time translates.

Solution. Orthogonality across scales and time translates

We have the Haar wavelet

$$\psi(t) = \begin{cases} 1, & 0 \le t < \frac{1}{2} \\ -1, & \frac{1}{2} \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

The scaled and shifted versions are

$$\psi\left(2^{j}t - k\right) = \begin{cases} 1, & k2^{-j} \le t < \left(k + \frac{1}{2}\right)2^{-j} \\ -1, & \left(k + \frac{1}{2}\right)2^{-j} \le t < \left(k + 1\right)2^{-j} \\ 0 & \text{otherwise.} \end{cases}$$

Shift orthogonality: For $k \neq l$, $\left[k2^{-j}, (k+1)2^{-j}\right)$ and $\left[l2^{-j}, (l+1)2^{-j}\right)$ are non-overlapping regions. Therefore,

$$\langle \psi (2^j t - k), \psi (2^j t - l) \rangle = 0. \quad k \neq l$$

$$\langle \psi(2^{j}t - k), \psi(2^{j}t - k) \rangle = \int_{t_{2-j}}^{(k+1)2^{-j}} 1dt = 2^{-j}.$$

Orthogonality across scales: Without loss of generality let, p > q be two different scales. Therefore, $\psi\left(2^{p}t - k\right)$ has a smaller support than $\psi\left(2^{q}t - l\right)$ i.e., $2^{-p} < 2^{-q}$. Notice

- 1) $\psi(2^qt-l)$ is constant in each of the intervals $(m2^{-(q+1)}, (m+1)2^{-(q+1)}), m \in \mathbb{Z}$.
- 2) For p > q, any interval $(n2^{-p}, (n+1)2^{-p})$, $n \in \mathbb{Z}$ is a proper subset of the interval $(m2^{-(q+1)}, (m+1)2^{-(q+1)})$ where $m = \lfloor n2^{q+1-p} \rfloor$.

Therefore,

$$\int_{k2^{-p}}^{(k+\frac{1}{2})2^{-p}} \psi\left(2^{p}t-k\right)\psi\left(2^{q}t-l\right)dt = -\int_{(k+\frac{1}{2})2^{-p}}^{(k+1)2^{-p}} \psi\left(2^{p}t-k\right)\psi\left(2^{q}t-l\right)dt$$

$$\implies \langle \psi (2^{p}t - k), \psi (2^{q}t - l) \rangle = \int_{k2^{-p}}^{(k + \frac{1}{2})2^{-p}} \psi (2^{q}t - l) dt - \int_{(k + \frac{1}{2})2^{-p}}^{(k + 1)2^{-p}} \psi (2^{q}t - l) dt$$

Therefore, the scales and time translates of Haar wavelets $\{\psi\left(2^{j}-k\right), k\in\mathbb{Z}, j=0,1,\cdots\}$ are all orthogonal to each other.

Parseval's equality

Let $f(t) \in L^1(\mathbb{R})$. From the class notes, the wavelet decomposition of the function is given by

$$f(t) = v_0(t) + \sum_{j=0}^{\infty} w_j(t),$$
 (1)

where

$$v_{0}(t) = \sum_{k=-\infty}^{\infty} a_{k}^{(0)} \phi(t-k) \in \mathcal{V}_{0}$$

$$v_{j}(t) = \sum_{k=-\infty}^{\infty} b_{k}^{(j)} 2^{j/2} \psi(2^{j}t-k) \in \mathcal{W}_{j}$$

and the coefficients $a_k^{(0)}$ and $b_k^{(j)}$ are obtained by projecting f(t) onto the orthonormal basis of $\mathcal{V}_0, \mathcal{W}_0, \mathcal{W}_1, \mathcal{W}_2 \cdots$, i.e.,

$$\begin{array}{ll} a_k^{(0)} & = & \left\langle f\left(t\right), \phi\left(t-k\right)\right\rangle, \\ b_k^{(k)} & = & \left\langle f\left(t\right), 2^{j/2} \psi\left(2^j t-k\right)\right\rangle. \end{array}$$

Our aim is to prove that the energy in the signal is equal to the sum of square of the wavelet coefficients $\left\{a_k^{(0)}, b_k^{(k)}, k \in \mathbb{Z}, j = 0, 1, \cdots\right\}$ i.e.,

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \sum_{k=-\infty}^{\infty} \left| a_k^{(0)} \right|^2 + \sum_{j=0}^{\infty} \sum_{k=-\infty}^{\infty} \left| b_k^{(j)} \right|^2$$

The subspaces $\mathcal{V}_0, \mathcal{W}_0, \mathcal{W}_1, \cdots$ are all orthogonal to each other. Therefore,

$$\langle v_0(t), w_j(t) \rangle = 0, \quad j = 0, 1, 2 \cdots$$

 $\langle w_j(t), w_k(t) \rangle = 0, \quad j \neq k.$

Therefore,

$$\langle v_{0}(t), f(t) \rangle = \langle v_{0}(t), v_{0}(t) \rangle + \sum_{j=0}^{\infty} \langle v_{0}(t), w_{j}(t) \rangle = \langle v_{0}(t), v_{0}(t) \rangle$$

$$\langle w_{j}(t), f(t) \rangle = \langle w_{j}(t), v_{0}(t) \rangle + \sum_{j=0}^{\infty} \langle w_{j}(t), w_{j}(t) \rangle = \langle w_{j}(t), w_{j}(t) \rangle$$

Hence,

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \langle f(t), f(t) \rangle = \langle v_0(t), v_0(t) \rangle + \sum_{j=0}^{\infty} \langle w_j(t), w_j(t) \rangle.$$
 (2)

Consider

$$\langle v_{0}(t), v_{0}(t) \rangle = \left\langle \sum_{k=-\infty}^{\infty} a_{k}^{(0)} \phi(t-k), \sum_{l=-\infty}^{\infty} a_{l}^{(0)} \phi(t-l) \right\rangle$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_{k}^{(0)} \overline{a_{l}^{(0)}} \langle \phi(t-k), \phi(t-l) \rangle$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_{k}^{(0)} \overline{a_{l}^{(0)}} \delta_{kl} = \sum_{k=-\infty}^{\infty} \left| a_{k}^{(0)} \right|^{2}.$$
(3)

Similarly,

$$\langle w_{j}(t), w_{j}(t) \rangle = \left\langle \sum_{k=-\infty}^{\infty} b_{k}^{(j)} 2^{j/2} \psi \left(2^{j} t - k \right), \sum_{l=-\infty}^{\infty} b_{l}^{(j)} 2^{j/2} \psi \left(2^{j} t - l \right) \right\rangle$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} b_{k}^{(j)} \overline{b_{l}^{(j)}} \left\langle 2^{j/2} \psi \left(2^{j} t - k \right), 2^{j/2} \psi \left(2^{j} t - l \right) \right\rangle$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} b_{k}^{(j)} \overline{b_{l}^{(j)}} \delta_{kl} = \sum_{k=-\infty}^{\infty} \left| b_{k}^{(j)} \right|^{2}. \tag{4}$$

From (2), (3) and (4), we have the Parseval's equality

$$\int\limits_{-\infty}^{\infty}\left|f\left(t\right)\right|^{2}dt=\sum\limits_{k=-\infty}^{\infty}\left|a_{k}^{\left(0\right)}\right|^{2}+\sum\limits_{j=0}^{\infty}\sum\limits_{k=-\infty}^{\infty}\left|b_{k}^{\left(j\right)}\right|^{2}.$$

Remark:

• Notice that the Parseval's equality is same as the following result that we have proved for inner product spaces: If $\{\underline{v}_1, \underline{v}_2, \cdots\}$ form orthonormal basis for an inner product space \mathcal{V} and a vector $\underline{v} \in \mathcal{V}$ is written as $\underline{v} = \sum_{k=1}^{\infty} a_k \underline{v}_k$, then

$$|\underline{v}|^2 = \langle \underline{v}, \underline{v} \rangle = \sum_{k=1}^{\infty} |a_k|^2.$$

Problem 4. For $j \in \mathbb{Z}$, let \mathcal{V}_j be the space of all signals $f(t) \in L^2$ bandlimited within the interval $[-2^j\pi, 2^j\pi]$. Consider the signal $\phi(t) := \operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$. Prove the following.

- The nesting, closure, shrinking and scaling properties that we discussed in the class as part of the multiresolution analysis definition.
- $\{\phi(t-k), k \in \mathbb{Z}\}$ is a shift orthogonal basis for \mathcal{V}_0 .
- $\phi(t) = \phi(2t) + \sum_{k \in \mathbb{Z}} \frac{2(-1)^k}{(2k+1)\pi} \phi(2t-2k-1)$. (Scaling relation)

Solution. Part 1

Nesting property: If $f(t) \in \mathcal{V}_j$, then f(t) is bandlimited within the interval $\left[-2^j\pi, 2^j\pi\right] \implies f(t)$ is bandlimited within the interval $\left[-2^{j+1}\pi, 2^{j+1}\pi\right] \implies f(t) \in \mathcal{V}_{j+1}$. Therefore, $\mathcal{V}_j \subset \mathcal{V}_{j+1}$, $j = 0, 1, \cdots$. Therefore

$$\mathcal{V}_0 \subset \mathcal{V}_1 \subset \mathcal{V}_2 \subset \mathcal{V}_3 \cdots$$

Scaling property: If $f(t) \in \mathcal{V}_j$, then f(t) is bandlimited within the interval $\left[-2^j\pi, 2^j\pi\right] \implies f(2t)$ is bandlimited within the interval $\left[-2^{j+1}\pi,2^{j+1}\pi\right] \implies f\left(2t\right) \in \mathcal{V}_{j+1}$. Therefore, $\left\{f\left(2t\right) \mid f\left(t\right) \in \mathcal{V}_{j}\right\} \subseteq \mathcal{V}_{j+1}$.

Similarly, if $f(t) \in \mathcal{V}_{j+1}$, then f(t) is bandlimited within the interval $\left[-2^{j+1}\pi, 2^{j+1}\pi\right] \implies f\left(\frac{t}{2}\right)$ is bandlimited within the interval $\left[-2^{j}\pi, 2^{j}\pi\right] \implies f\left(\frac{t}{2}\right)$ is $\left\{f\left(\frac{t}{2}\right) \mid f(t) \in \mathcal{V}_{j+1}\right\} \implies \left\{f\left(\frac{t}{2}\right) \mid f(t) \in \mathcal{V}_{j+1}\right\}$ $\{f(2t) \mid f(t) \in \mathcal{V}_j\} \supseteq \mathcal{V}_{j+1}.$

Therefore, we have $\{f(2t) \mid f(t) \in \mathcal{V}_j\} = \mathcal{V}_{j+1}$.

Shrinking property: Signals in \mathcal{V}_{-j} are bandlimited within the interval $\left[-2^{-j}\pi,2^{-j}\pi\right]$ for $j\geq 0$. Therefore, signals in $\bigcap_{j\in\mathbb{Z}} \mathcal{V}_j$ will have only a d.c. component in the signal. The only square integrable d.c. signal is f(t) = 0.

Therefore, $\bigcap_{j\in\mathbb{Z}} \mathcal{V}_j = \{0\}.$

Closure property: Let $f(t) \in L^2(\mathbb{R})$ be any function in L^2 space. Consider its Fourier transform $F(\omega)$. Let $f_i(t)$ be the projection of f(t) onto \mathcal{V}_i . Then its Fourier transform is

$$F_{j}(\omega) = \begin{cases} F(\omega) & \omega \in \left[-2^{-j}\pi, 2^{-j}\pi\right] \\ 0 & \text{otherwise.} \end{cases}$$

For the closure property, we need to show that $\lim_{j\to\infty}f_{j}\left(t\right)=f\left(t\right)$ in L^{2} sense.

Split the frequencies into disjoint intervals given by $I_j = \left[-2^{-(j+1)}\pi, 2^{-(j+1)}\pi\right] \setminus \left[-2^{-j}\pi, 2^{-j}\pi\right], j = 1, 2, \cdots$ and $I_0 = [-\pi, \pi]$. We have $\bigcup_{j=0}^N I_j = \left[-2^{-(N+1)}\pi, 2^{-(N+1)}\pi\right]$ and $\bigcup_{j=0}^N I_j = \mathbb{R}$.

Let E be the energy in the signal f(t). Using Parseval's theorem, we have

$$E = \int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega = \sum_{j=0}^{\infty} \int_{\omega \in I_j} |F(\omega)|^2 d\omega.$$
 (5)

Let E_j be the energy of the signal in the frequencies I_j i.e.,

$$E_{j} = \int_{\omega \in I_{j}} |F(\omega)|^{2} d\omega, \quad j = 0, 1, 2, \dots$$

Then, the equation (5) can be written as

$$E = \sum_{j=0}^{\infty} E_j$$

$$\implies \lim_{N \to \infty} \left(E - \sum_{j=0}^{N} E_j \right) = 0. \quad (\because E \text{ is finite})$$
(6)

Notice that $\sum_{j=0}^{N} E_j$ is the energy of the signal f(t) within the frequencies $\left[-2^{-(N+1)}\pi, 2^{-(N+1)}\pi\right]$. Therefore,

 $\sum_{j=0}^{N} E_{j} \text{ is the energy in } F_{N+1}\left(\omega\right). \text{ Therefore, } \left(E-\sum_{j=0}^{N} E_{j}\right) \text{ is the energy in } F\left(\omega\right)-F_{N+1}\left(\omega\right) \left(=f\left(t\right)-f_{N+1}\left(t\right)\right)$ in the time-domain). From equation (6),

$$\lim_{N \to \infty} \int_{-\infty}^{\infty} |f(t) - f_{N+1}(t)|^2 dt = 0$$

$$\implies \lim_{N \to \infty} f_N(t) = f(t) \text{ (in } L^2 \text{ sense)}$$

Hence, any function in $L^{2}(\mathbb{R})$ can be represented within $\bigcup_{j=0}^{N} \mathcal{V}_{j}$. Therefore, $\bigcup_{j=0}^{N} \mathcal{V}_{j} = L^{2}(\mathbb{R})$.

Part 2:

We need to prove that

- a) $\{\phi(t-k), k \in \mathbb{Z}\}$ are orthogonal and
- b) $\{\phi(t-k), k \in \mathbb{Z}\}$ form basis for \mathcal{V}_0

To prove that $\{\phi(t-k), k \in \mathbb{Z}\}$ are orthogonal, consider the inner product between $\phi(t-k)$ and $\phi(t-l)$ for $k \neq l$,

$$\int_{-\infty}^{\infty} \phi(t-k) \phi(t-l) = \int_{-\infty}^{\infty} \frac{\sin(\pi(t-k))}{\pi(t-k)} \frac{\sin(\pi(t-l))}{\pi(t-l)} dt$$

$$= \int_{-\infty}^{\infty} (-1)^k \frac{\sin(\pi t)}{\pi(t-k)} (-1)^l \frac{\sin(\pi t)}{\pi(t-l)} dt \quad (\sin(t-n\pi) = (-1)^n \sin(t))$$

$$= \frac{(-1)^{l+k}}{\pi^2(k-l)} \int_{-\infty}^{\infty} \left(\frac{\sin^2(\pi t)}{t-k} - \frac{\sin^2(\pi t)}{t-l} \right) dt$$

$$= \frac{(-1)^{l+k}}{\pi^2(k-l)} \int_{-\infty}^{\infty} \frac{\sin^2(\pi(t-k))}{t-k} dt$$

$$- \frac{(-1)^{l+k}}{\pi^2(k-l)} \int_{-\infty}^{\infty} \frac{\sin^2(\pi(t-l))}{t-l} dt \quad (\sin^2(t-n\pi) = \sin^2(t))$$

$$= \frac{(-1)^{l+k}}{\pi^2(k-l)} \int_{-\infty}^{\infty} \frac{\sin^2(\pi t)}{t} dt \quad (\text{Change of variables } t-k \to t)$$

$$- \frac{(-1)^{l+k}}{\pi^2(k-l)} \int_{-\infty}^{\infty} \frac{\sin^2(\pi t)}{t} dt \quad (\text{Change of variables } t-l \to t)$$

$$\int_{-\infty}^{\infty} \phi(t-k) \phi(t-l) = 0$$

Proving that $\{\phi(t-k), k \in \mathbb{Z}\}$ form basis for \mathcal{V}_0 following from Nyquist sampling theorem. Any bandlimited signal can be sampled at Nyquist rate without loosing any information. The original signal can be constructed from the samples using "sinc-interpolation".

Consider any signal $f(t) \in \mathcal{V}_0$ that is bandlimited to $[-\pi, \pi]$. The Nyquist rate is $2 \times \frac{\pi}{2\pi} = 1$ samp/sec. The sampled signal is

$$f_{s}(t) = \sum_{k \in \mathbb{Z}} f(k) \delta(t - k).$$

If $F(\omega)$ is the Fourier transform of f(t), then the Fourier transform of $f_s(t)$ is same as $F(\omega)$ repeated at 2π intervals. Therefore, the signal f(t) can be obtained from $f_s(t)$ by using an ideal low pass filter bandlimited to $[-\pi,\pi]$. In time-domain, this filter is given by $\phi(t) = \frac{\sin(\pi t)}{\pi t}$. Therefore,

$$f(t) = \sum_{j=-\infty}^{\infty} f_s(t-j) \phi(j)$$

$$= \sum_{j=-\infty}^{\infty} \sum_{k \in \mathbb{Z}} f(k) \delta(t-j-k) \phi(j)$$

$$= \sum_{k \in \mathbb{Z}} f(k) \sum_{j=-\infty}^{\infty} \delta(t-k-j) \phi(j)$$

$$f(t) = \sum_{k \in \mathbb{Z}} f(k) \phi(t-k) \quad (\phi(t) * \delta(t-k) = \phi(t-k))$$

Therefore, any function in V_0 can be represented as a linear combination of $\{\phi(t-k), k \in \mathbb{Z}\}$. Hence, $\{\phi(t-k), k \in \mathbb{Z}\}$ form orthogonal basis for V_0 .

Part 3

FIGURE 2. Filtering $\phi(2t)$ by this filter $H(\omega)$ results in $\phi(t)$

 $\phi(t)$ is an ideal low pass filter band limited to $[-\pi, \pi]$. Its scale $\phi(2t)$ an ideal low pass filter band limited to $[-2\pi, 2\pi]$. $\phi(t)$ can be obtained from $\phi(2t)$ by passing through a filter h(t) whose frequency response is as shown in Figure 2. The signal h(t) is given by (derivation for this is given later)

$$h(t) = \delta(t) + \sum_{k \in \mathbb{Z}} \frac{2(-1)^k}{(2k+1)\pi} \delta(t-2k-1).$$
 (7)

Therefore,

$$\phi(t) = h(t) * \phi(2t)$$

$$= \delta(t) * \phi(2t) + \sum_{k \in \mathbb{Z}} \frac{2(-1)^k}{(2k+1)\pi} \delta(t-2k-1) * \phi(2t)$$

$$\phi(t) = \phi(2t) + \sum_{k \in \mathbb{Z}} \frac{2(-1)^k}{(2k+1)\pi} \phi(2t-2k-1)$$

Proof for equation (7):

The frequency response in Figure 2, is an even periodic function with period 2π . Therefore, we can write the frequency response as

$$H(\omega) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(n\frac{\omega}{2}\right),$$
where, $a_0 = \int_{-\pi}^{\pi} H(\omega) d\omega = 2\pi$

$$a_n = \int_{-\pi}^{\pi} H(\omega) \cos\left(n\frac{\omega}{2}\right) d\omega$$

$$= \int_{-\pi}^{\pi} \cos\left(n\frac{\omega}{2}\right) d\omega$$

$$= \frac{2}{n} \sin\left(n\frac{\omega}{2}\right) \Big|_{-\pi}^{\pi}$$

$$= \frac{4}{n} \sin\left(n\frac{\pi}{2}\right)$$

$$= \begin{cases} 0 & n \text{ is even} \\ (-1)^k \frac{4}{2k+1}, & n = 2k+1 \text{ is odd} \end{cases}$$

Therefore,

$$\begin{split} H\left(\omega\right) &=& 2\pi + \sum_{k=0}^{\infty} \left(-1\right)^k \frac{4}{2k+1} \cos\left(\left(2k+1\right) \frac{\omega}{2}\right) \\ &=& 2\pi + \sum_{k=0}^{\infty} \left(-1\right)^k \frac{2}{2k+1} \left(e^{j(2k+1)\frac{\omega}{2}} + e^{-j(2k+1)\frac{\omega}{2}}\right) \\ \Longrightarrow & h\left(t\right) &=& \delta\left(t\right) + \sum_{k=0}^{\infty} \left(-1\right)^k \frac{1}{\left(2k+1\right)\pi} \left(\delta\left(t-2k-1\right) + \delta\left(t+2k+1\right)\right) \\ &=& \delta\left(t\right) + \sum_{k=0}^{\infty} \left(-1\right)^k \frac{1}{\left(2k+1\right)\pi} \delta\left(t-2k-1\right) + \sum_{k=0}^{\infty} \left(-1\right)^k \frac{1}{\left(2k+1\right)\pi} \delta\left(t+2k+1\right) \end{split}$$

$$= \delta(t) + \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)\pi} \delta(t-2k-1)$$

$$+ \sum_{l=-\infty}^{-1} (-1)^{-1-l} \frac{1}{(2(-l-1)+1)\pi} \delta(t+2(-l-1)+1)$$

$$= \delta(t) + \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)\pi} \delta(t-2k-1) + \sum_{l=-\infty}^{-1} (-1)^{l+1} \frac{2}{-(2l+1)\pi} \delta(t-2l-1)$$

$$= \delta(t) + \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)\pi} \delta(t-2k-1) + \sum_{l=-\infty}^{-1} (-1)^l \frac{2}{(2l+1)\pi} \delta(t-2l-1)$$

$$= \delta(t) + \sum_{k=-\infty}^{\infty} (-1)^k \frac{1}{(2k+1)\pi} \delta(t-2k-1)$$