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Problem 1. P. P. Vaidyanathan, Problem #4.1. (6 pts)

Solution. The output signals Yj (€7*) and Y} (e/*) are as shown in Figure 1.
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FIGURE 1. Frequency domain representation of signal at various stages in the given transformation.



Problem 2. P. P. Vaidyanathan, Problem #4.9. (7 pts)

Solution. At time ¢, the painter paints the tM mod N object, t =0,1,2,---.

Fort > N, tM mod N = (tM — MN) mod N = ((t—N)M) mod N.

Therefore, it is enough to check if the painter paints all objects in the first IV instants i.e., fort =0,1,--- , N —
1.

Essentially, we need a condition that

{tM mod N|t=0,1,---,N—-1}={0,1,--- ,N — 1}
Without loss of generality, we can consider 1 < M < N. If M > N, we can consider 1 < M/ = M —kN < N
and hence kM mod N = kM’ mod N Vk.
Necessary condition:

The case under which the painter does not paint all objects is when ;M mod N = tsM mod N for some
t17ét2 and 0 <t1 <ty < N-—-1.

tiM mod N = t3M mod N
- (tg — tl) M modN = 0

Since to —t; # 0 and t; —ts < N — 1, N does not divide t5 — ¢;. Therefore, (t; —t2) M mod N = 0 holds
true only if some factor(# 1) of N divides M i.e., ged (M, N) # 1.

The necessary condition for the painter to paint all objects is that M and N are co-prime.

Sufficient condition:

Let ged (M, N) =1. Since 0 < tg —t; < N —1 for all t; # t2, 0 < t; < t3 < N —1, N does not divide to —t;.
Therefore, N does not divide (to — t;) M as ged (M, N) = 1. Therefore,

(ta—t1)M mod N # 0
toM  mod N # t1iM mod N, 0<t; <ty <N-—1.
Hence, the elements tM mod N, 0 <t < N — 1 are all unique. Therefore,
{tM mod N|t=0,1,--- ,N—1}={0,1,--- ,N—1}.

Therefore, the painter paints all objects.

Hence, the necessary and sufficient condition for the painter to paint all objects is ged (M, N) = 1. |




Problem 3. P. P. Vaidyanathan, Problem #4.13. (5 pts)

Solution. We have

a+ 271

1+azt

(a+2z71) (1 —az™?)
1—a2272

a (1 — 2_2) + (1 — a2) 272

1—a2272
a(l 72’2) 1—a? 1
1—a2272 1—a2272

Eo(2%) E1(2%)

H(z) = Zz*iEi (22
=0

H(z) =

a(l—z"1
Where, E() (Z) = %,
1—a?
Bl = g

This gives the type-I decomposition of H (z).

. 1 =1
|E0 (69X0)| = 0’ = 41 |E0 eJ7r ‘ “5|. Therefore, Ey(z) is all-pass filter for a = 1. For a # 1,
, a
Ey (2) is not an all-pass filter.
|E1 (69X0)| =1, ’El (e”)| = 1+ 4. Therefore, Ej (z) is not an all-pass filter. [ |



Problem 4. P. P. Vaidyanathan, Problem #4.18. (7 pts)
Solution. For M = 4, the DFT filter bank is given in Figure 2.
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FiGure 2. DFT filter bank.

The inputs to the DFT block are
Vi (2) =2 "B, (™)X (2), k=0,1,---,M—1.
The outputs of the DFT filter bank are

Xp(2) = Zw_ikYi(z), Jk=0,1,--- M—1
i=0

wherew = e

Therefore,

Hy, (Z) = w_Zk _ZE )
=0

~.

4
Hy(z) = Zz_iEi (z*
i=0

= (1 + 2_4) + 271 (1 + 2z_4) + 272 (2 + 2_8) 4273 (0.5 + 2_4)

Ho(z) = 142 422405224274 4220 42774710
4 .
Hy(z) = Y (=) 2 'Ei(2*)
=0
= (T4 44" (1+2:7") —222+427%) — 422 (05+277)
Hy(2) = 144271 =22 05523 +274 425275 —jz " — 2710

4

Hy(2) = Z )

= (1 +2 ) = (12 422 (24278 =272 (05 +27Y)
Hy(2) = 1—2' 42205234274 -2 2774710

4

H3(2) = Zj_iz_iEi (2'4)
i=0

= (142" =gz (1427 =272 (24 27%) +427° (05+277)
H3(z) = 1—j§2 ' =2:2405j2 3427425254527 —2710



Problem 5. P. P. Vaidyanathan, Problem #4.19.

Solution. The DFT synthesis structure is given in Figure 3.
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F1GURE 3. 3 channel DFT synthesis filters.

The outputs of the DFT block are

Ap(z) = ) wifY; k=0,1,2
0
P 1 3
where wy = 67]%:7§7§j.

k=0
2
= Z 2F72Ry, (z3) A (2)
k=0
2
Y(2) = ( 2Ry (2 ngkm )
k=0
We obtain Fj (z) = Y(z) by setting Y; (2) = 0Vi # [. In this case,

Y(2) = Z (zF 2Ry (2%) wiY) (2))

|
=
—
N
~
ilng
no
o
o)
b
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2
= Fi(z) = sz*Qwé’“Rk (%)

2
Fo(2) = sz Ry, (2

(1+z ) 1(17276)+(2+3273)

L p 7243, 3427577

mo

k=
= 2z
2+

2
F(z) = Z F20E Ry (2°)
k=0

= 2 2(1+2) 4wzt (1—27%) +wi (2+327%)

= 2w +wyz '+ 22+ 3wl 42 7P —war T

Fi(s) = (-1+V3))+ (1-v35) . 5

Fy(2) = sz 2 kRk )

k=0

\fj) 1 272+3(_1+\/§j)z—3+z—57 (—1—\/3]')27
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(10 pts)



= 221+ ) 4wiz ' (1-2% +ws (243277

= 2wzt wiz '+ 22+ 3wsr P20 —wi T
-1 3J —1—-+3j -1 3J
F‘2 (Z) — (,1,\/?}]) +Hﬂzl+22+3(ﬂz3+z5uﬂz7_

From (1), we have
2
Fy(z) = sz,ng (z%)
k=0
2
= 272 Z szk (23)
k=0

2
672jw Z ejwk:Rk (ijw)

k=0

2
Zejkak (e3jw)
k=0

— R ()] -

[Fo ()] =

2
F(z) = sz_ZwékRk (z%)
k=0

= 27?2 22: (zwé)k Ry, ((zwé)3>

k=0

2
— |E (ej"‘-’)| _ 6—2jw Zej(W7l2Tﬂ)kRk (ej?)(w*lr%r)k)
k=0

= 3 i (w15 )k eI3(w—1 5 )k
> i ( )
= |Fp (ej?’(w_l%ﬂ))

Therefore, we obtain ‘Fl (ej‘“)‘ by shifting |F0 (ej“)’ to the right by %’Tl. Hence, the magnitude responses of
‘Fo (ej“’)‘ and ‘Fz (ej“)‘ are as shown in Figure 4.
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FIGURE 4. Magnitude responses of the synthesis filters Fj (ej“’) and Fy (ejw) for the given ’Fl (ej‘*’) ’



Problem 6. P. P. Vaidyanathan, Problem #4.22. (15 pts)

Solution. We want to identify mg such that

1) By (%) is an image of Ep i (2), 0 < k < myg

2) Ej(z) is an image of Enfime—rk (%), mo+1 < k < M — 1 ie., Ep 4k (2) is an image of Eyr_j (2),
1 S k S M—-1-— mo

Part (a):

Consider a 7% order filter that satisfies the constraint h (n) = h (N —n), 0<n < N.
H(z)=ap+ a1z  +asz 2 +azz 3 +azz™ +apz ™ +a127 % +apz™"
For M = 3,

H(z)= (ao +azz 2+ alz_ﬁ) + 27t (a1 +agz 3+ aoz_ﬁ) +272 (ag + agz_?’)

Ey (2) ap+azz™> +a;z°
Ei(z2) = a1+ asz 3 +agz8
Ey(2) = as+ asz 3.

)

In this case, Ey (z) is an image of F; (z) and F5 (z) is and image of itself. Therefore, mg = 1.
For M = 4,

H(z)= (ao + agz_4) 4271 (a1 + a22_4) + 272 (a2 + alz_4) 4273 (a3 + alz_4)

Ey(z) = (ao + agz_4)
Ei(z) = (a1 + agz_4)
Ey(z) = (a2 + alz_4)
Es(z) = (a3 + a1z )

In this case, Ey (z) is an image of E3 (z) and E; (z) is an image of Ey (z). Therefore, mg = 4.

Part (b):

Let ho,h1,--- ,hn be the coefficients of N** order filter H (z). Let Ej () be the polyphase components of
H (z)

M-1
H(z)= Z 2B (2M).
=0

If hn = hN—'m
H(z) = 2z NH(z)
M-1 M-—1
- Z 2B, (ZM) = 7N Z Z'E; (sz)
=0 1=0
M—1
= z7N Z ziEi(z*M) j=M-—-1—1
=0
M—1
= Z_N ZM 1_jE1\/[,1,j (Z M)
j=0
M—1
— L M-(N+1) z_jEMfl,j (Z—M)
j=0

Let N +1=pM + q where ¢ = (N +1) mod M. We can write

M-1 M-1
Z 2R, (ZM) = M-pPM—q Z zijM_l_j (sz)
= Jj=0
M-1
— ot A-PME, (M)
=0
M-1

- oMy (M)

<
Il
=)
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Case ¢ = 0:

M-1 M-1
Z Z—iEi (ZJVI) — Z Z_(i+q)Z(1_p)MEM_1_i (Z_M)
=0 =0
M-1
Z Zfi Z(lfp)MEM_l_i (ZfM)
1=0

polynomial in zM
The R.H.S. and L.H.S. give the polyphase type-I decomposition in two different forms. Since type-I decom-
position is unique, we equate the polyphase components from R.H.S and L.H.S. We get

E (M) =0PMEy (M), i=1,2, M -1

Therefore, Eyr—1-; (2) is an image of E; (ZM) Therefore, mg = M.
Case ¢ > 0:
M-1 M-1
Z R, (ZM) _ Z Lt 0-pME (Z—M)
i=0 i=0
M—1—q
= Z e, (-pMp, . (Z—M)
i=0
M-1
+ Z ) (A-p)Mp, (Z*M)
i=M—q
M-1
= > 2 PMEy L (27M) =ity
Jj=aq
q—
Z j+M) (1— p)ME (7M) j:if(qu)
M-1 -1
zﬂE Z yiA-PME, ]+q( 7M)
=0 i=a polynomial in zM
q—1
+ Z 277 zprEq_j_l (ziM)
j=0

polynomial in zM

The R.H.S. and L.H.S. give the polyphase type-I decomposition in two different forms. Since type-I decom-
position is unique, we equate the polyphase components from R.H.S and L.H.S. We get

MY\ ZﬁpMEq,ifl (ZiM) s 0<1<q
E; (Z ) - {2(1_p)MEM1i+q (z—M)

, ¢g<i<M-1
Therefore, E; (2) is an image of E;_1_; for 0 <4 < g—1 and E; (z) is and image of Epryq—1—; forg <i < M-1.
Therefore, mg = ¢ — 1.
Therefore,
m M, M divides (N +1)
0 ((N+1) mod M)—1, otherwise
I M, M divides (N +1)
o - N mod M, otherwise



Problem 7. P. P. Vaidyanathan, Problem #4.26. (10 pts)

Solution. Figure 5 shows the linear-phase interpolator.

2] H)  |—

FIGURE 5. 25-fold low-pass linear-phase interpolator

(Part 1) Figure 6 shows the passband and stopband frequencies required for the interpolation filter. Hence
the cutoff frequencies are given by
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— 0.95 0.95 s
—2r  —0.957 0.957 P2 g —T% st Ws 35w

FIGURE 6. Upsampler in frequency domain

(Part 2) Filter order is given in Table 1.
(Part 3) Two stage implementation is shown in Figure 7. The frequency domain representation of the two
stage interpolator is given in Figure 8.

G(z) I(z) —>

FIGURE 7. Two stage implementation of 25-fold low-pass linear phase interpolator
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FI1GURE 8. Frequency domain representation of 2-stage interpolator



We can choose the cutoff frequencies for G(z) and I(z) from Figure 8. For cascaded filters, passband ripples
get added and stop band ripple remain same.

For G(z), we have w, = 0'%5“ and wy = w. Choose §, = %1 = 0.005, §, = d = 0.001.

For I(z), we have w, = %927 and w, = £ — %95 Choose 4, = % = 0.005, 5, = d> = 0.001.

The order of the filters is given in Table 1.

(Part 4) The sampling frequency is 8KHz. The computational complexity of the two implementations is

given in Table 1.

’ Filter ‘ A—If = Y=Y ‘ 5y ‘ s ‘ Do (0p,85) ‘ Order(N) ‘ Op Freq ‘ (#muls per sec) ‘

27
H(z) 0.002 0.01 | 0.002 13.9258 6963 200 kHz 1392600000
G(z) 0.01 0.005 | 0.001 15.6144 1562 40 kHz 62480000
1(z) 0.181 0.005 | 0.001 15.6144 86 200 kHz 17200000

TABLE 1. Interpolation filter parameters

Based on the computational complexity, we can say that the two stage implementation runs 17.4 (: m%)
times faster than the single stage implementation.
The filter order calculation is based on following empirical formula!
v D800
AF/F
Deo(0p,05) = (logyg6s) [al (log1g 5p)2 + azlogyo 0p + a3}
+ [‘14 (logy 6,)° + a5 log,o 6, + a6}
where a; = 5.3e — 3, a2 = 0.071, a3 = —0.4761, a4 = —0.0026, a5 = —0.5941, ag = —0.4278 ]

10.Herman etal, “Practical design rules for optimum low pass FIR digital filters”, Bell-sys tech.Journal, vol 52,n0.2,July 1973.
10



Problem 8. P. P. Vaidyanathan, Problem #5.2. (10 pts)
Solution. The modified QMF bank is shown in Figure 9.

(Ho (=2) Fo (2) — Hi(=2) F1 (2))
If Hy(2) = H1 (—2), Fo (2) = Hy (2) and Fy (2) = Hy (2),

%) = X5 () + o (-2)?)
= 0 () g )+ () B (-2)
£ = 2 (2 + 1 (-2)?)

Therefore, the choice of Fy (z) and F; (z) cancels aliasing component X (—z). The transfer function in this
case is

1) = 3 = 2 (1 0+t (-)F).
If Hy(2) is linear phase filter, we can write
He) = (o)
— H(—¢*) = H(ea‘(w—w)) _ e tigT H(g(w—r))‘.
In this case, the transfer function is
T(ej“) = % (e_j“’N ‘H(ej“’)’2 + e IwNIN™ \ f (ej(“_”))r)

—Jjw ,—JwN ) . 2
- eTe 62 (}H(ej“)|2 +(-nN ‘H (ej(‘”_”)>‘ )
Therefore, system does not introduce phase distortion. Since, |H (e7*)| is even function in w, |H (e’%) ]2 =
|H (e‘j%)ﬁ. Therefore,

T (%) = [[H ()] + )Y [H ()|

[SE]

T@5)] = |HE)P x |1+ (-1

Therefore, to avoid T' (ej%) =0, N has to be even.
Since N is a linear phase filter, the unique number of coefficients are % + 1. Hence, the number of MPUs
and APUs required is % + 1. [ ]

11



Problem 9. P. P. Vaidyanathan, Problem #5.9. (15 pts)
Solution. The 2 channel QMF bank is shown in Figure 10.

Up(s) = Ho(2)X (2
Vi) = Hi(2)X ()
Vo) = g (U (=) v (=at)) = 5 (1t () x (+F) 0 (+1) (=<4
Vi) = g (U (&) v (=) = g (o () x (5F) - () e (=+4)
Wo(z) = V(=) = 5 (Ho(2) X () + Ho (~2) X (~2)
Wi() = V() = (1 (2) X () — Hi (=) X ()
X (z2) = Wo(z)Fo(z)+Wi(z)Fi(z)

= P by () X (2) 4 By (~2) X (-2 + T (01 () X ) = 1 (-2) X ()
£ = YW@ REHEF )

A2y (2) Fo (2) — Hi (=) B (2)

X(2) = —= (Ho(2) Fo(2) + Ho (=2) F1 ()
5y (-2) Ry (2) ~ Ho () B (2)
To avoid aliasing, we need
HO (—Z) FO (Z) — Ho (Z) F1 (Z) =0
Fo(z)  Ho(z)
~ Fi(2)  Ho(-2)
Let
Fy(z) = 2Ho(2)C(z)
Fi(z2) = 2Ho(—2)C(z2)
In this case, the transfer function is
() = §8 = ((Ho () + (Ho (-2))*) C (2)
= [(Bo (z3) + 27 B1 (%) + (Bo (=) = =7 (:9))°] € (2)
= (B (:9)* + 22 (B (2%)°] € ()
— C(2) = T(z)

(Eo(22))" + 272 (B (22))°
Therefore, the synthesis filters are

Fb( ) 2 HO( ) (EO (,2’2))2 +Z*2 (El (22))2
Fi(2) = 22H,(2) T(z)

(Eo (22))” + 272 (B1 (22))”
12



Since, Hy (z) and H; (z) are stable, we need to identify T (z) satisfying following conditions:

a) T (z) is all pass.

b) (EO(ZZ))sz(f)Q(El(Zz))Z has poles inside unit circle i.e., if (EO (22))2 + 272 (E1 (22))2 has zeros outsize unit
circle, T' (z) should also have zeros at the same locations.

If a1,a0,- -+ ,an are zeros of (Eo (22))2 + 272 (E1 (22))2 that are located outside unit circle, we will choose
T (2) such that it satisfies above conditions:

N1 —a!
T(z) = ’)
=11 (o
The stable synthesis filters that achieve this transfer function are

z) = 2H, (2) (Lo
Fo( ) = (EO (22))2 422 (El (22))2 };[1 ( -1 ) 5

2Ho (—2) A
Fi(z) = 2 2 ~1 /-
) (Eo (22))" + 272 (E1(2%)) }_[1< >

13



Problem 10. P. P. Vaidyanathan, Problem #5.2.
Solution. The 3 channel QMF bank is shown in Figure 11.

X(2)
—

Vi(2) = 322:(]]6((&,3)1’2;)7 wy=eF

Wi, (Z) = U (2’3)

2
= EZH’“ ((w3)zz) X ((wd) 2)
=0
X() = Y MR
k=0
2 2
= % Z (Fk (2) Z H, ((wd)l z) X ((wg)z z))
k=0 1=0
X = X% [X ()’ 2) (Z Fy. (=) Hi ((wgfz))]
i=0 k=0
To avoid aliasing, we require
2
> Fp(2)Hy(z) = 3T(2)#0
k=0
ZFk Hk (.U3Z) = 0
ZFk ) Hy (w3z) = 0,

where T (z) = igz) These conditions can be written in matrix form as

|

[ Ho (Z) H1 ( ) H2 (Z) i _FO (Z)- 3T (Z)
HO (wgz) (UJgZ) HQ (wg,z) F1 (Z) = 0
| Ho (w%z) (w%z) H, (wgz)_ | 2 (2) ] 0
For perfect reconstruction, we require 7' (z) = —* for some integer k.
[ Hy(2) Hy(2) Hy (2) | [Fo(2)] 1]
Ho(w3z) Hy(wszz) Ho(wsz)| |Fi(2)| =327% (0
H, (w%z) H (w%z) H, (w%z)_ Fs (2) 0]

L Hi(z) Hj (2) Fy(2) 1
1 Hy(wsz) Ha(wsz)| |[Fi(2)| =327% 10
1 H (w%z) H, (wgz) Fs (2) 0

(15 pts)

We have Z Hi (whz) = 3h1 (0) = 6 and Y Ha (wiz) = 3ho (0) = 9. By adding 2"¢ and 3" row to the 1%

i=0 =0
row, we get



3 6 9 1 T[F(2)] 1]
1 Hy(wsz) Hy(wsz)| |Fi(2)| = 3277 |0
1 H (wgz) H, (wgz)_ | F> (2) ] 0]
1 2 3 1 [Fo(2)] 1]
— 1 H1 (UJgZ) H2 (CU3Z) F1 (Z) = 3Z_k 0
|1 H (wgz) H, (w%z)_ | F2 (2) ] 0]
— Fy(2) +2F (2) +3F(2) = 3z7F
Fo (2) 1 2 3 1N
— |Fi(2)| =327% |1 Hy(wsz) Ho(ws2) 0
Fy (2) 1 H (wgz) Ho (w%z) 0

Let
2 3

1
H= |1 H1 (wgz) H2 (CLJ3Z)
1 H (w%z) Hy (w%z)
Therefore, the first column of the H™! gives the synthesis filters.
Let

1 2 3
D(z) = det| |1 H;(wszz) Hs(wsz)
1 Hy (w3z) Hs(wiz)
Hy (w3z) Ha (wgz) — Hy (ws3z) Hy (w%z)
+2 (Hz (w32) — Hy (w32))
+3 (Hi (w32) — Hy (w32))

Therefore, the synthesis filters are

FO (Z) 3Z_k H1 ((JJg,Z) H2 (w%z) — HQ (UJ32) H1 (w%z)
Fl (Z) = D H2 (W3Z) — HQ (w%z)
Fs (2) () H, (w%z) — Hy (w32)

a) Ho(z) =1, Hy (z) =2+ 271, Hy=3+22"" 4+ 272

Hi(w32) Hy (w32) = (2+wiz™") (34 2wsz™" +wiz™?)
6+ (40.23 + 3w32)) 27t (2 + 2w§) 272 d w3z
Hy (w3z) Hy (w3z) = 6+ (4w3 +3w3) 27"+ (24 2w3) 27> + w3z °

Hy (w3z) Ha (w z) —H (wgz) Hj (wsz) = —V/3jz71 (1 — 2271 4 2_2)

(2) = —V/3j2"
Fy (2) 1—2271 4272
Fi(2)| =327 -2+ 271
F2 (Z) 1

The synthesis filters are FIR filters.
b) Hy(2) =1, Hi (2) =2+ 2"  + 275 Hy=3+2z"1 + 272
Hi(w32) Hy (w32) = (2+wiz ' +wsz™®) (3+2wsz™ ! +wiz?)
= 6+ (dws + 3wi) 27t + (2+ 2w§) 2%t wzz?
+3w32™% + 2320 277
Hy (w32) Hy (w32) = 6+ (dwi +3w3) 27! + (2+ 2w3) 27 2 + wiz 3

+3w3z7 + 2wz2 8 4+ 277

15



FO (Z) 3227k 1-— 2271 + 272 + 31274 - 2275
F2 (Z) 1—=2

The synthesis filters are IIR filters with poles at 2%,0.)32% and w§2%. Since the poles lie outside the unit
circle, the filters are unstable.
b) Hy(2) =1, H1 (2) =2+ 2" + 275 Hy=3+ 271 +2272

Hi(w32) Hy (w3z) = (2+wiz ' +wsz™®) B+wsz ' +2wiz"?)
= 6+ (2ws+ 3w§) 27+ (1+ dwi) 272 4 2w3z
+3w327 % + lwiz 8 42277
H, (wgz) Hy (w3z) = 6+ (2{.03 + 3w§) 27t 4 (1 + 4w§) 272 4 2wgz 73
+3w3z7 5 + 1w5276 +22,77

(—1 — 4zl 4922724 3,74 = 2*5)

Fo (2) 3,2k ;
F]_ (Z) = 7_3 _]. + 22_
Rz 20-27) 124
The synthesis filters are IIR filters with poles at 1,w3 and w?. Since the poles lie on the unit circle, the filters

are unstable. |
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