E9-252:Mathematical methods and techniques in
signal processing
HW 4 solutions

Instructor: Shayan G. Srinivasa

Teaching assistants: Ankur Raina and Chaitanya Kumar Matcha

Problem 1
(1)

Without loss of generality we shift the signal to make it causal

3 —2<t< -1
—4 —-1<t<0

t) = 1
f(t) 2 0<t<l (1)
1 1<t<?2
After shift
3 0<t«1
-4 1<t<?2
t) = - 2
f(t) 2 2<t<3 (2)
1 3<t<4
We project the signal f(t) = fo(t) onto components lying in V; and W; because
Vo=V W;.
f(t):z 1)(I’1 +Zdl)\111n
where,

D, () =22 B2t —n)

The components csLl) and ds«}) are obtained by

i) = (fo(t), ®1n(t))
dgzl) = <f0(t)7\:[11,n(t)>

Writing fo(t) = f1(t) + g1 () Where
t) = ZCS)CPLH( and g1 (¢ Z d(l)klll n(t). But we can further project

n
the signal f1(¢) lying in V7 onto Components lying in V5 and W5 because

Vi=V, & W,. Now,
)= Pyn(t) + > dP Vs, ()



where,
P = (f1(1), Dan(t))
dg) = <f1(t)7 \IIZ,n(t»

Therefore the final wavelet decomposition of the signal is

F&) =Y dPW1 o (6)+ Y D Bon(t)+ Y dP Wy, (1) (3)

n

I II II1

The coefficients are found to be

JCO I SN €D B S CO I A CON
0 \@ € \[ 0 \/§ 1 2

—05 0<t<?2
(4)
2<t<4
0<t<1
-35 1<t<?2
(5)
2<t<3
—-05 3<t<4
Writing fi(t) = fa(t) + ga(t Where
= ZC(Q)q)Q 2(t) and ga(t Zd Uy
The coefﬁc1entb are found to be
=1 dP =-2=
falt) = {0.5 0<t<4 (6)
-1 0<t<?2
t) = - 7
92() {1 2<t<4 Q



(2)

Frequency response can be plotted for each of the signals namely f(t), f1(¢), g1(t), f2(t), g2(t).
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Figure 1: Signal decomposition and Frequency response

(3)

We go from coarser to finer representation of the signal. Terms II and III in
(3) represent a coarse representation of the signal. To make the representation
finer we add additional information captured in the wavelets U, ,,(¢). Nulling
the last stage would mean equating the coefficient of U5 ,,(t) to zero. Therefore,



the approximate signal is

)= S0+ P

7
Wy o(t) + ﬁxvm(t) + ®20(t)

V2
4 0<t<1
-3 1<t<2
)1 2<t<3
0 3<t<4.

Energy lost in the approximation is
Bioss = [1f(t) = F(1)[]* = 4
If@) - fFOI* _ 4

Fraction lost = ——~——%— = —,

£ (B2 30
(4)

After performing the wavelet decomposition, we get the wavelet coefficients
dg), cg), df). We perform quantization on these coefficients. The quantization
is done as follows

maxn{d(l) (2) d(2)} mlnn{d(l) (2)7d£12)}

A= 53
52 V244
A=L2 = g = 0868
Quantization level | binary
max=4.95 111
4.076 110
3.208 101
2.34 100
1.472 011
0.604 010
-1.132 001
min=-2 000
We get the new wavelet coefficients namely ¢ Y ), J(J )

di =495 dV =0604 & =1472 dP =-2.

The binary representation is therefore
binary(d"))= 111, binary(d{")= 010,binary(c{))= 011, binary(d’)= 000.
The reconstructed signal becomes

)= dDWy () + Y TP (1) + Y APy, (1)

= 4.95W o(t) + 0.604W 1 (t) + 1.472B5 o(t) — 2W5 (1)



Eqloss = || £(t) = Fo ()]
F(t) = f,(t) = 0.103W 4 (t) — 0.47204 o (£)
1£(t) = Fa(®)I> _ 0.282 _
I[f ()] 30

Note: The translation(time shift) that was done earlier to the signal does
not change the quantization and therefore, the quantized signal is time shifted
accordingly.

Q-Fraction lost = 0.7%




Problem 2
(1)

6
0.1875
Calculate the mean vector u = ;; which gives us u = .
m ;pz ; g n (04375)

6
Calculate the covariance matrix C = sz(:cz — p)(x; — p)T which gives
i=0
4.4023 3.5430
us C = .
3.5430 4.1211

Lets calculate the eigen vectors of the matrix C'

—0.7210 0.6929
We find the eigen vectors are and with correspond-
—0.6929 —0.7210

ing eigen values A1 = 7.8075 and Ay = 0.7160 respectively. Form the matrix ®
by stacking as columns, the eigen vectors of C'

o [ 07210 0.6929
1\ =0.6929 —0.7210/°

The KL representation becomes &; = ®Tx; giving us the vectors

0.0280 . —0.6929\ _ 4.2418
1= T2 = T3 =
—1.4139 —0.7210 0.0841

T

- —0.7210\ _ —0.0280\ . —4.2418

g4 = Iy = e — .
0.6929 1.4139 —0.0841

(2)

New representation keeping only the dominant eigen component is done by

R —0.7210
taking inner product of the dominant eigen vector namely e = ( 0 6929)

~ ~

T; = (Ti€) €

This gives us
N —0.202 \ 0.4996\ —3.0583
r1 = Lo = r3 =
—0.0194 0.4802 —2.9393
. 0.5198\ . 0.202 \ 3.0583
Ty = Ty = Lo = .
0.4996 0.0194 2.9393
All points point in the direction of €.

All the points lie on the straight line y = 0.9610z.

Fraction of the signal energy lost is )\1/}52 =8.4%



(3)
Let the equation of the straight line that minimizes the squared distance from

the original points be y = mx + ¢. We need to evaluate the optimal m and
6

c. The cost function that needs to be minimized is £ = Z pi(mz; + ¢ — y;)?,

i=0
where x; and y; refer to the first and second components of x; respectively.
o€ o0&
— =0 —=0=
om Jc

TIm+3c=58 & 3m+16c=7=
m = 0.8048 & ¢ =0.2866

(4)

After dimensionality reduction, the points lie on a straight line y = 0.9610zx.
The optimal line that separates the reduced points must be perpendicular to the
straight line y = 0.9610x. Let the equation of the straight line that minimizes
the squared distance from the points after dimensionality reduction be

0.9610y + = ¢. We need to evaluate the optimal ¢. The cost function that
6

needs to be minimized is & = Zpi(0.9610yi + x; — 0)2, where x; and y; refer
i=0
to the first and second components of Z; respectively.
oF
de
16¢ = 11.7660 = ¢ = 0.7354

0=



