
E9-252:Mathematical methods and techniques in

signal processing

HW 4 solutions

Instructor: Shayan G. Srinivasa

Teaching assistants: Ankur Raina and Chaitanya Kumar Matcha

Problem 1

(1)

Without loss of generality we shift the signal to make it causal

f(t) =


3 −2 ≤ t < −1

−4 −1 ≤ t < 0

2 0 ≤ t < 1

1 1 ≤ t < 2

(1)

After shift

f(t) =


3 0 ≤ t < 1

−4 1 ≤ t < 2

2 2 ≤ t < 3

1 3 ≤ t < 4

(2)

We project the signal f(t) = f0(t) onto components lying in V1 and W1 because
V0 = V1 ⊕W1.

f(t) =
∑
n

c(1)n Φ1,n(t) +
∑
n

d(1)n Ψ1,n(t)

where,

Φj,n(t) = 2−
j
2 Φ(2−j t− n)

The components c
(1)
n and d

(1)
n are obtained by

c(1)n = 〈f0(t),Φ1,n(t)〉
d(1)n = 〈f0(t),Ψ1,n(t)〉

Writing f0(t) = f1(t) + g1(t) where,

f1(t) =
∑
n

c(1)n Φ1,n(t) and g1(t) =
∑
n

d(1)n Ψ1,n(t). But we can further project

the signal f1(t) lying in V1 onto components lying in V2 and W2 because
V1 = V2 ⊕W2. Now,

f1(t) =
∑
n

c(2)n Φ2,n(t) +
∑
n

d(2)n Ψ2,n(t)
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where,

c(2)n = 〈f1(t),Φ2,n(t)〉
d(2)n = 〈f1(t),Ψ2,n(t)〉

Therefore the final wavelet decomposition of the signal is

f(t) =
∑
n

d(1)n Ψ1,n(t)︸ ︷︷ ︸
I

+
∑
n

c(2)n Φ2,n(t)︸ ︷︷ ︸
II

+
∑
n

d(2)n Ψ2,n(t)︸ ︷︷ ︸
III

(3)

The coefficients are found to be

c
(1)
0 = − 1√

2
c
(1)
1 =

3√
2

d
(1)
0 =

7√
2

d
(1)
1 =

1√
2
⇒

f1(t) =

{
−0.5 0 ≤ t < 2

1.5 2 ≤ t < 4
(4)

g1(t) =


3.5 0 ≤ t < 1

−3.5 1 ≤ t < 2

0.5 2 ≤ t < 3

−0.5 3 ≤ t < 4

(5)

Writing f1(t) = f2(t) + g2(t) where,

f2(t) =
∑
n

c(2)n Φ2,n(t) and g2(t) =
∑
n

d(2)n Ψ2,n(t).

The coefficients are found to be

c
(2)
0 = 1 d

(2)
0 = −2⇒

f2(t) =
{

0.5 0 ≤ t < 4 (6)

g2(t) =

{
−1 0 ≤ t < 2

1 2 ≤ t < 4
(7)
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(2)

Frequency response can be plotted for each of the signals namely f(t), f1(t), g1(t), f2(t), g2(t).
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Figure 1: Signal decomposition and Frequency response

(3)

We go from coarser to finer representation of the signal. Terms II and III in
(3) represent a coarse representation of the signal. To make the representation
finer we add additional information captured in the wavelets Ψj,n(t). Nulling
the last stage would mean equating the coefficient of Ψ2,n(t) to zero. Therefore,
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the approximate signal is

f̂(t) =
∑
n

d(1)n Ψ1,n(t) +
∑
n

c(2)n Φ2,n(t)

=
7√
2

Ψ1,0(t) +
1√
2

Ψ1,1(t) + Φ2,0(t)

=


4 0 ≤ t < 1

−3 1 ≤ t < 2

1 2 ≤ t < 3

0 3 ≤ t < 4.

Energy lost in the approximation is

Eloss = ||f(t)− f̂(t)||2 = 4.

Fraction lost =
||f(t)− f̂(t)||2

||f(t)||2
=

4

30
.

(4)

After performing the wavelet decomposition, we get the wavelet coefficients

d
(1)
n , c

(2)
n , d

(2)
n . We perform quantization on these coefficients. The quantization

is done as follows

∆ =
maxn{d(1)n , c

(2)
n , d

(2)
n } −minn{d(1)n , c

(2)
n , d

(2)
n }

23
,

∆ =

7√
2

+ 2

8
=

7
√

2 + 4

16
= 0.868.

Quantization level binary

max=4.95 111

4.076 110

3.208 101

2.34 100

1.472 011

0.604 010

-1.132 001

min=-2 000

We get the new wavelet coefficients namely ĉ
(j)
n , d̂

(j)
n

d̂
(1)
0 = 4.95 d̂

(1)
1 = 0.604 ĉ

(2)
0 = 1.472 d̂

(2)
0 = −2.

The binary representation is therefore

binary(d̂
(1)
0 )= 111, binary(d̂

(1)
1 )= 010,binary(ĉ

(2)
0 )= 011, binary(d̂

(2)
0 )= 000.

The reconstructed signal becomes

f̂q(t) =
∑
n

d̂(1)n Ψ1,n(t) +
∑
n

ĉ(2)n Φ2,n(t) +
∑
n

d̂(2)n Ψ2,n(t)

= 4.95Ψ1,0(t) + 0.604Ψ1,1(t) + 1.472Φ2,0(t)− 2Ψ2,0(t)
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Eqloss = ||f(t)− f̂q(t)||2

f(t)− f̂q(t) = 0.103Ψ1,1(t)− 0.472Φ2,0(t)

Q-Fraction lost =
||f(t)− f̂q(t)||2

||f(t)||2
=

0.232

30
= 0.7%

Note: The translation(time shift) that was done earlier to the signal does
not change the quantization and therefore, the quantized signal is time shifted
accordingly.
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Problem 2

(1)

Calculate the mean vector µ =

6∑
i=0

pixi which gives us µ =

(
0.1875

0.4375

)
.

Calculate the covariance matrix C =

6∑
i=0

pi(xi − µ)(xi − µ)T which gives

us C =

(
4.4023 3.5430

3.5430 4.1211

)
.

Lets calculate the eigen vectors of the matrix C

We find the eigen vectors are

(
−0.7210

−0.6929

)
and

(
0.6929

−0.7210

)
with correspond-

ing eigen values λ1 = 7.8075 and λ2 = 0.7160 respectively. Form the matrix Φ
by stacking as columns, the eigen vectors of C

Φ =

(
−0.7210 0.6929

−0.6929 −0.7210

)
.

The KL representation becomes x̃i = ΦTxi giving us the vectors

x̃1 =

(
0.0280

−1.4139

)
x̃2 =

(
−0.6929

−0.7210

)
x̃3 =

(
4.2418

0.0841

)

x̃4 =

(
−0.7210

0.6929

)
x̃5 =

(
−0.0280

1.4139

)
x̃6 =

(
−4.2418

−0.0841

)
.

(2)

New representation keeping only the dominant eigen component is done by

taking inner product of the dominant eigen vector namely ê =

(
−0.7210

−0.6929

)

x̂i = 〈xi, ê〉 ê

This gives us

x̂1 =

(
−0.202

−0.0194

)
x̂2 =

(
0.4996

0.4802

)
x̂3 =

(
−3.0583

−2.9393

)

x̂4 =

(
0.5198

0.4996

)
x̂5 =

(
0.202

0.0194

)
x̂6 =

(
3.0583

2.9393

)
.

All points point in the direction of ê.

All the points lie on the straight line y = 0.9610x.

Fraction of the signal energy lost is λ2

λ1+λ2
= 8.4%
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(3)

Let the equation of the straight line that minimizes the squared distance from
the original points be y = mx + c. We need to evaluate the optimal m and

c. The cost function that needs to be minimized is E =

6∑
i=0

pi(mxi + c − yi)2,

where xi and yi refer to the first and second components of xi respectively.

∂E
∂m

= 0 &
∂E
∂c

= 0⇒

71m+ 3c = 58 & 3m+ 16c = 7⇒

m = 0.8048 & c = 0.2866

(4)

After dimensionality reduction, the points lie on a straight line y = 0.9610x.
The optimal line that separates the reduced points must be perpendicular to the
straight line y = 0.9610x. Let the equation of the straight line that minimizes
the squared distance from the points after dimensionality reduction be
0.9610y + x = c. We need to evaluate the optimal c. The cost function that

needs to be minimized is Ê =

6∑
i=0

pi(0.9610yi + xi − c)2, where xi and yi refer

to the first and second components of x̂i respectively.

∂Ê
∂c

= 0⇒

16c = 11.7660⇒ c = 0.7354
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