E9-252:Mathematical methods and techniques in signal processing HW 4 solutions

Instructor: Shayan G. Srinivasa
Teaching assistants: Ankur Raina and Chaitanya Kumar Matcha

Problem 1

(1)

Without loss of generality we shift the signal to make it causal

$$
f(t)= \begin{cases}3 & -2 \leq t<-1 \tag{1}\\ -4 & -1 \leq t<0 \\ 2 & 0 \leq t<1 \\ 1 & 1 \leq t<2\end{cases}
$$

After shift

$$
f(t)= \begin{cases}3 & 0 \leq t<1 \tag{2}\\ -4 & 1 \leq t<2 \\ 2 & 2 \leq t<3 \\ 1 & 3 \leq t<4\end{cases}
$$

We project the signal $f(t)=f_{0}(t)$ onto components lying in V_{1} and W_{1} because $V_{0}=V_{1} \oplus W_{1}$.

$$
f(t)=\sum_{n} c_{n}^{(1)} \Phi_{1, n}(t)+\sum_{n} d_{n}^{(1)} \Psi_{1, n}(t)
$$

where,

$$
\Phi_{j, n}(t)=2^{-\frac{j}{2}} \Phi\left(2^{-j} t-n\right)
$$

The components $c_{n}^{(1)}$ and $d_{n}^{(1)}$ are obtained by

$$
\begin{aligned}
c_{n}^{(1)} & =\left\langle f_{0}(t), \Phi_{1, n}(t)\right\rangle \\
d_{n}^{(1)} & =\left\langle f_{0}(t), \Psi_{1, n}(t)\right\rangle
\end{aligned}
$$

Writing $f_{0}(t)=f_{1}(t)+g_{1}(t)$ where,
$f_{1}(t)=\sum_{n} c_{n}^{(1)} \Phi_{1, n}(t)$ and $g_{1}(t)=\sum_{n} d_{n}^{(1)} \Psi_{1, n}(t)$. But we can further project the signal $f_{1}(t)$ lying in V_{1} onto components lying in V_{2} and W_{2} because $V_{1}=V_{2} \oplus W_{2}$. Now,

$$
f_{1}(t)=\sum_{n} c_{n}^{(2)} \Phi_{2, n}(t)+\sum_{n} d_{n}^{(2)} \Psi_{2, n}(t)
$$

where,

$$
\begin{aligned}
c_{n}^{(2)} & =\left\langle f_{1}(t), \Phi_{2, n}(t)\right\rangle \\
d_{n}^{(2)} & =\left\langle f_{1}(t), \Psi_{2, n}(t)\right\rangle
\end{aligned}
$$

Therefore the final wavelet decomposition of the signal is

$$
\begin{equation*}
f(t)=\underbrace{\sum_{n} d_{n}^{(1)} \Psi_{1, n}(t)}_{\mathrm{I}}+\underbrace{\sum_{n} c_{n}^{(2)} \Phi_{2, n}(t)}_{\mathrm{II}}+\underbrace{\sum_{n} d_{n}^{(2)} \Psi_{2, n}(t)}_{\mathrm{III}} \tag{3}
\end{equation*}
$$

The coefficients are found to be

$$
\begin{align*}
c_{0}^{(1)}=-\frac{1}{\sqrt{2}} \quad c_{1}^{(1)} & =\frac{3}{\sqrt{2}} \quad d_{0}^{(1)}=\frac{7}{\sqrt{2}} \quad d_{1}^{(1)}=\frac{1}{\sqrt{2}} \Rightarrow \\
f_{1}(t) & = \begin{cases}-0.5 & 0 \leq t<2 \\
1.5 & 2 \leq t<4\end{cases} \tag{4}\\
g_{1}(t) & = \begin{cases}3.5 & 0 \leq t<1 \\
-3.5 & 1 \leq t<2 \\
0.5 & 2 \leq t<3 \\
-0.5 & 3 \leq t<4\end{cases} \tag{5}
\end{align*}
$$

Writing $f_{1}(t)=f_{2}(t)+g_{2}(t)$ where,
$f_{2}(t)=\sum_{n} c_{n}^{(2)} \Phi_{2, n}(t)$ and $g_{2}(t)=\sum_{n} d_{n}^{(2)} \Psi_{2, n}(t)$.
The coefficients are found to be

$$
\begin{align*}
& c_{0}^{(2)}=1 \quad d_{0}^{(2)}=-2 \Rightarrow \\
& f_{2}(t)= \begin{cases}0.5 & 0 \leq t<4\end{cases} \tag{6}\\
& g_{2}(t)= \begin{cases}-1 & 0 \leq t<2 \\
1 & 2 \leq t<4\end{cases} \tag{7}
\end{align*}
$$

(2)

Frequency response can be plotted for each of the signals namely $f(t), f_{1}(t), g_{1}(t), f_{2}(t), g_{2}(t)$.

Figure 1: Signal decomposition and Frequency response
(3)

We go from coarser to finer representation of the signal. Terms II and III in (3) represent a coarse representation of the signal. To make the representation finer we add additional information captured in the wavelets $\Psi_{j, n}(t)$. Nulling the last stage would mean equating the coefficient of $\Psi_{2, n}(t)$ to zero. Therefore,
the approximate signal is

$$
\begin{aligned}
\widehat{f}(t) & =\sum_{n} d_{n}^{(1)} \Psi_{1, n}(t)+\sum_{n} c_{n}^{(2)} \Phi_{2, n}(t) \\
& =\frac{7}{\sqrt{2}} \Psi_{1,0}(t)+\frac{1}{\sqrt{2}} \Psi_{1,1}(t)+\Phi_{2,0}(t) \\
& = \begin{cases}4 & 0 \leq t<1 \\
-3 & 1 \leq t<2 \\
1 & 2 \leq t<3 \\
0 & 3 \leq t<4 .\end{cases}
\end{aligned}
$$

Energy lost in the approximation is

$$
\begin{gathered}
E_{\text {loss }}=\|f(t)-\widehat{f}(t)\|^{2}=4 . \\
\text { Fraction lost }=\frac{\|f(t)-\widehat{f}(t)\|^{2}}{\|f(t)\|^{2}}=\frac{4}{30} .
\end{gathered}
$$

(4)

After performing the wavelet decomposition, we get the wavelet coefficients $d_{n}^{(1)}, c_{n}^{(2)}, d_{n}^{(2)}$. We perform quantization on these coefficients. The quantization is done as follows

$$
\begin{gathered}
\Delta=\frac{\max _{n}\left\{d_{n}^{(1)}, c_{n}^{(2)}, d_{n}^{(2)}\right\}-\min _{n}\left\{d_{n}^{(1)}, c_{n}^{(2)}, d_{n}^{(2)}\right\}}{2^{3}} \\
\Delta=\frac{\frac{7}{\sqrt{2}}+2}{8}=\frac{7 \sqrt{2}+4}{16}=0.868
\end{gathered}
$$

Quantization level	binary
$\max =4.95$	111
4.076	110
3.208	101
2.34	100
1.472	011
0.604	010
-1.132	001
min $=-2$	000

We get the new wavelet coefficients namely $\widehat{c}_{n}^{(j)}, \widehat{d}_{n}^{(j)}$

$$
\widehat{d}_{0}^{(1)}=4.95 \quad \widehat{d}_{1}^{(1)}=0.604 \quad \widehat{c}_{0}^{(2)}=1.472 \quad \widehat{d}_{0}^{(2)}=-2 .
$$

The binary representation is therefore
$\operatorname{binary}\left(\widehat{d}_{0}^{(1)}\right)=111, \operatorname{binary}\left(\widehat{d}_{1}^{(1)}\right)=010, \operatorname{binary}\left(\widehat{c}_{0}^{(2)}\right)=011, \operatorname{binary}\left(\widehat{d}_{0}^{(2)}\right)=000$.
The reconstructed signal becomes

$$
\begin{aligned}
\widehat{f}_{q}(t) & =\sum_{n} \widehat{d}_{n}^{(1)} \Psi_{1, n}(t)+\sum_{n} \widehat{c}_{n}^{(2)} \Phi_{2, n}(t)+\sum_{n} \widehat{d}_{n}^{(2)} \Psi_{2, n}(t) \\
& =4.95 \Psi_{1,0}(t)+0.604 \Psi_{1,1}(t)+1.472 \Phi_{2,0}(t)-2 \Psi_{2,0}(t)
\end{aligned}
$$

$$
\begin{gathered}
E_{\mathrm{qloss}}=\left\|f(t)-\widehat{f}_{q}(t)\right\|^{2} \\
f(t)-\widehat{f}_{q}(t)=0.103 \Psi_{1,1}(t)-0.472 \Phi_{2,0}(t) \\
\text { Q-Fraction lost }=\frac{\left\|f(t)-\widehat{f}_{q}(t)\right\|^{2}}{\|f(t)\|^{2}}=\frac{0.232}{30}=0.7 \%
\end{gathered}
$$

Note: The translation(time shift) that was done earlier to the signal does not change the quantization and therefore, the quantized signal is time shifted accordingly.

Problem 2

(1)

Calculate the mean vector $\boldsymbol{\mu}=\sum_{i=0}^{6} p_{i} \boldsymbol{x}_{\boldsymbol{i}}$ which gives us $\boldsymbol{\mu}=\binom{0.1875}{0.4375}$.
Calculate the covariance matrix $C=\sum_{i=0}^{6} p_{i}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}\right)^{\boldsymbol{T}}$ which gives us $\boldsymbol{C}=\left(\begin{array}{ll}4.4023 & 3.5430 \\ 3.5430 & 4.1211\end{array}\right)$.
Lets calculate the eigen vectors of the matrix \boldsymbol{C}
We find the eigen vectors are $\binom{-0.7210}{-0.6929}$ and $\binom{0.6929}{-0.7210}$ with corresponding eigen values $\lambda_{1}=7.8075$ and $\lambda_{2}=0.7160$ respectively. Form the matrix Φ by stacking as columns, the eigen vectors of C

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
-0.7210 & 0.6929 \\
-0.6929 & -0.7210
\end{array}\right) .
$$

The KL representation becomes $\tilde{\boldsymbol{x}}_{\boldsymbol{i}}=\boldsymbol{\Phi}^{\boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{i}}$ giving us the vectors
$\tilde{\boldsymbol{x}}_{1}=\binom{0.0280}{-1.4139} \tilde{\boldsymbol{x}}_{2}=\binom{-0.6929}{-0.7210} \tilde{\boldsymbol{x}}_{3}=\binom{4.2418}{0.0841}$
$\tilde{\boldsymbol{x}}_{4}=\binom{-0.7210}{0.6929} \tilde{\boldsymbol{x}}_{5}=\binom{-0.0280}{1.4139} \tilde{\boldsymbol{x}}_{6}=\binom{-4.2418}{-0.0841}$.
(2)

New representation keeping only the dominant eigen component is done by taking inner product of the dominant eigen vector namely $\widehat{e}=\binom{-0.7210}{-0.6929}$

$$
\widehat{x_{i}}=\left\langle x_{i}, \widehat{e}\right\rangle \widehat{e}
$$

This gives us
$\widehat{\boldsymbol{x}}_{1}=\binom{-0.202}{-0.0194} \widehat{\boldsymbol{x}}_{2}=\binom{0.4996}{0.4802} \widehat{\boldsymbol{x}}_{\mathbf{3}}=\binom{-3.0583}{-2.9393}$
$\widehat{\boldsymbol{x}}_{4}=\binom{0.5198}{0.4996} \widehat{\boldsymbol{x}}_{5}=\binom{0.202}{0.0194} \widehat{\boldsymbol{x}}_{6}=\binom{3.0583}{2.9393}$.
All points point in the direction of \widehat{e}.
All the points lie on the straight line $y=0.9610 x$.
Fraction of the signal energy lost is $\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}=8.4 \%$

(3)

Let the equation of the straight line that minimizes the squared distance from the original points be $y=m x+c$. We need to evaluate the optimal m and c. The cost function that needs to be minimized is $\mathcal{E}=\sum_{i=0}^{6} p_{i}\left(m x_{i}+c-y_{i}\right)^{2}$, where x_{i} and y_{i} refer to the first and second components of $\boldsymbol{x}_{\boldsymbol{i}}$ respectively.

$$
\begin{gathered}
\frac{\partial \mathcal{E}}{\partial m}=0 \quad \& \quad \frac{\partial \mathcal{E}}{\partial c}=0 \Rightarrow \\
71 m+3 c=58 \quad \& \quad 3 m+16 c=7 \Rightarrow \\
m=0.8048 \quad \& \quad c=0.2866
\end{gathered}
$$

(4)

After dimensionality reduction, the points lie on a straight line $y=0.9610 x$. The optimal line that separates the reduced points must be perpendicular to the straight line $y=0.9610 x$. Let the equation of the straight line that minimizes the squared distance from the points after dimensionality reduction be $0.9610 y+x=c$. We need to evaluate the optimal c. The cost function that needs to be minimized is $\widehat{\mathcal{E}}=\sum_{i=0}^{6} p_{i}\left(0.9610 y_{i}+x_{i}-c\right)^{2}$, where x_{i} and y_{i} refer to the first and second components of $\widehat{\boldsymbol{x}_{\boldsymbol{i}}}$ respectively.

$$
\begin{gathered}
\frac{\partial \widehat{\mathcal{E}}}{\partial c}=0 \Rightarrow \\
16 c=11.7660 \Rightarrow c=0.7354
\end{gathered}
$$

