INDIAN INSTITUTE OF SCIENCE

E9-252: MATHEMATICAL METHODS AND TECHNIQUES IN SIGNAL PROCESSING HOME WORK \#2 - SOLUTIONS, FALL 2014

INSTRUCTOR: SHAYAN G. SRINIVASA

TEACHING ASSISTANTS: ANKUR RAINA, CHAITANYA KUMAR MATCHA

Problem 1. (Frequency domain analysis) From Figure 1,

$$
\begin{align*}
X_{1}(z) & =\frac{1}{M} \sum_{i=0}^{M-1} X\left(z^{\frac{1}{M}} e^{j \frac{2 \pi i}{M}}\right) \\
\Longrightarrow Y_{1}(z) & =X_{1}\left(z^{L}\right) \\
& =\frac{1}{M} \sum_{i=0}^{M-1} X\left(z^{\frac{L}{M}} e^{j \frac{2 \pi i}{M}}\right) . \tag{1}
\end{align*}
$$

Similarly,

$$
\begin{align*}
X_{2}(z) & =X\left(z^{L}\right) \\
Y_{2}(z) & =\frac{1}{M} \sum_{i=0}^{M-1} X_{2}\left(z^{\frac{1}{M}} e^{j \frac{2 \pi i}{M}}\right) \\
& =\frac{1}{M} \sum_{i=0}^{M-1} X\left(\left(z^{\frac{1}{M}} e^{j \frac{2 \pi i}{M}}\right)^{L}\right) \\
& =\frac{1}{M} \sum_{i=0}^{M-1} X\left(z^{\frac{L}{M}} e^{j \frac{2 \pi i L}{M}}\right) \tag{2}
\end{align*}
$$

Figure 1. Comparing the outputs by changing the order of decimator and upsampler.

To prove that $Y_{1}(z)=Y_{2}(z) \forall X(z)$, it is necessary and sufficient to satisfy the following condition:

$$
\begin{aligned}
\left\{\left.X\left(z^{\frac{L}{M}} e^{j \frac{2 \pi i L}{M}}\right) \right\rvert\, i=0,1, \cdots, M-1\right\} & =\left\{\left.X\left(z^{\frac{L}{M}} e^{j \frac{2 \pi i}{M}}\right) \right\rvert\, i=0,1, \cdots, M-1\right\} \forall X(z) \\
\text { i.e., }\left\{\left.e^{j \frac{2 \pi i L}{M}} \right\rvert\, i=0,1, \cdots, M-1\right\} & =\left\{\left.e^{j \frac{2 \pi i}{M}} \right\rvert\, i=0,1, \cdots, M-1\right\} .
\end{aligned}
$$

Since $e^{j 2 \pi k}=1 \forall k \in \mathbb{Z}$, we have $e^{j \frac{2 \pi i L}{M}}=e^{j \frac{2 \pi(i L \bmod M)}{M}}$. Hence, the equivalent condition is

$$
\begin{equation*}
\{(i L) \bmod M \mid i=0,1, \cdots, M-1\}=\{0,1, \cdots, M-1\} . \tag{3}
\end{equation*}
$$

Let $0 \leq i_{1} \leq M-1$ and $0 \leq i_{2} \leq M-1$ such that $i_{1} \neq i_{2}$. Without loss of generality, consider $i_{1}<i_{2}$. Using the following identity on modulo operation

$$
(a-b) \bmod M=(a \bmod M-b \bmod M) \bmod M,
$$

we have,

$$
\begin{equation*}
\left(\left(i_{1} L\right) \bmod M-\left(i_{2} L\right) \bmod M\right) \bmod M=\left(\left(i_{1}-i_{2}\right) L\right) \bmod M \tag{4}
\end{equation*}
$$

Case L and M are relatively prime:

Since $0<i_{1}-i_{2}<M$, and $\operatorname{gcd}(L, M)=1,\left(\left(i_{1}-i_{2}\right) L\right) \bmod M \neq 0$. Therefore from (4),

$$
\begin{gathered}
\left(\left(i_{1} L\right) \bmod M-\left(i_{2} L\right) \bmod M\right) \bmod M \neq 0 \\
\Longrightarrow\left(i_{1} L\right) \bmod M \neq\left(i_{2} L\right) \bmod M .
\end{gathered}
$$

We have proved that $i_{1} \neq i_{2} \Longrightarrow\left(i_{1} L\right) \bmod M \neq\left(i_{2} L\right) \bmod M \forall i_{1}, i_{2} \in\{0,1,2 \cdots, M-1\}$. Therefore, when $\operatorname{gcd}(L, M)=1$, equation (3) holds true.

Case M divides L :
Let $L=P \times M, P>1$. Therefore, it is possible to chose $i_{1}=i_{2}+M$. Under this condition,

$$
\left(\left(i_{1}-i_{2}\right) L\right) \bmod M=(M L) \bmod M=0
$$

Therefore,

$$
\begin{gathered}
\left(\left(i_{1} L\right) \bmod M-\left(i_{2} L\right) \bmod M\right) \bmod M=0 \\
\Longrightarrow\left(i_{1} L\right) \bmod M=\left(i_{2} L\right) \bmod M
\end{gathered}
$$

We have shown that for some choice of $i_{1} \neq i_{2},\left(i_{1} L\right) \bmod M=\left(i_{2} L\right) \bmod M$. Hence, the values $\{(i L) \bmod M\}_{i=0}^{M-1}$ are not distinct. Therefore, when M divides L, equation (3) does not hold true.

Case $\operatorname{gcd}(M, L)=G>1$:
Let $M=G \times P_{M}$ and $L=G \times P_{L}$. We can chose $i_{1}=i_{2}+G$. Under this condition, $e^{j 2 \pi \frac{i L}{M}}=e^{j 2 \pi \frac{i P_{L}}{P_{M}}}$. Therefore, $\left\{\left.e^{j 2 \pi \frac{i P_{L}}{P_{M}}} \right\rvert\, i=0,1, \cdots, M-1\right\}$ has P_{M} distinct values. Therefore, equation (3) does not hold true under this condition.

Hence, the equation (3) holds true iff L and M are relatively prime. This proves that M fold decimator and L fold upsampler blocks can be interchanged iff L and M are relatively prime.
(Time domain analysis) From the definitions of decimator and upsampler,

$$
\begin{align*}
x_{1}[n] & =x[M n] . \\
y_{1}[n] & = \begin{cases}x_{1}\left[\frac{n}{L}\right], & n \text { is a multiple of } L \\
0 & \text { otherwise },\end{cases} \\
y_{1}[n] & = \begin{cases}x\left[M \frac{n}{L}\right], & n \text { is a multiple of } L \\
0 & \text { otherwise }\end{cases} \tag{5}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& x_{2}[n]= \begin{cases}x_{1}\left[\frac{n}{L}\right], & n \text { is a multiple of } L \\
0 & \text { otherwise. }\end{cases} \\
& y_{1}[n]
\end{align*}=\begin{array}{ll}
x_{1}[M n], & \begin{array}{ll}
x\left[\frac{M n}{L}\right], & M n \text { is a multiple of } L \\
0 & \text { otherwise. }
\end{array}
\end{array}
$$

From equations (5) and (6), the outputs are same iff n is a multiple of L when ever $M n$ is a multiple of L.
Case $\operatorname{gcd}(L, M)=1$: Trivial in this case that L divides $M n \Longleftrightarrow L$ divides n.
Case $\operatorname{gcd}(L, M)=P \neq 1$: Let $L=P \times Q$. In this case L divides $M n$ when ever Q divides n. Hence L divides $M n \nRightarrow L$ divides n.

Therefore, the outputs are same iff L and M are relatively prime.

Problem 2. We use the identities in Figure 2 to simplify the given transformations.

Figure 2. Identities related to decimation, upsampling and delay operations.

Therefore, $Y(z)=0$.

Problem 3. Figure 3 indicates the stopband and passband frequencies for the lowpass filter when the signal is bandlimited to ω_{B}. We have

$$
\begin{aligned}
\omega_{s} & =\frac{2 \pi-\omega_{B}}{L}=0.2742 \\
\omega_{p} & =\frac{\omega_{B}}{L}=0.04
\end{aligned}
$$

Legend —— Signal frequency response

Figure 3. The frequency response at the output of upsampler is shown. The stopband and passband frequencies for the filter are also indicated.

The stopband and passband ripple amplitudes are

$$
\begin{aligned}
\delta_{s} & =0.005 \\
\delta_{p} & =0.01
\end{aligned}
$$

Let N be the filter order of $H(z)$ and f_{s} indicate the sampling frequency at the output of $H(z)$. The filter does N multiplications to give one output sample. Hence, the computational complexity of the efficient implementation of the interpolation filter is $N f_{s}$ multiplications per second.

The filter order N is estimated based on the following empirical formula by Herrmann et al. ${ }^{1}$

$$
\begin{aligned}
N= & \frac{D_{\infty}\left(\delta_{p}, \delta_{s}\right)}{\left(\omega_{s}-\omega_{p}\right) / 2 \pi} \\
D_{\infty}\left(\delta_{p}, \delta_{s}\right)= & \left(\log _{10} \delta_{s}\right)\left[a_{1}\left(\log _{10} \delta_{p}\right)^{2}+a_{2} \log _{10} \delta_{p}+a_{3}\right] \\
& +\left[a_{4}\left(\log _{10} \delta_{p}\right)^{2}+a_{5} \log _{10} \delta_{p}+a_{6}\right]
\end{aligned}
$$

where $a_{1}=5.3 e-3, a_{2}=0.071, a_{3}=-0.4761, a_{4}=-0.0026, a_{5}=-0.5941, a_{6}=-0.4278$.
A simpler but less accurate empirical formula is given by Bellanger ${ }^{2}$:

$$
N=\frac{2 \log _{10}\left(1 / \delta_{s} \delta_{p}\right)}{3\left(\omega_{s}-\omega_{p}\right) / 2 \pi}
$$

For a signal bandlimited to 3 KHz , the Nyquist sampling rate is 6 KHz and 20% oversampling is at 7.2 KHz . Hence,

$$
f_{s}=7200 \mathrm{~Hz}
$$

Figure 4. 2 stage interpolation filter.

For the 2-stage interpolator shown in Figure 4, for the filter $H_{1}(z)$, let the stopband and passband frequencies be $\omega_{s 1}$ and $\omega_{p 1}$. Let the stopband and passband ripples be $\delta_{s 1}$ and $\delta_{p 1}$ respectively. Let the input to $H_{1}(z)$ be

[^0]bandlimited to $\omega_{B 1}$ and let $f_{s 1}$ be the sampling frequency at the output of $H_{1}(z)$ and N_{1} be the filter order. We have
\[

$$
\begin{aligned}
\omega_{B 1} & =\omega_{B} \\
\omega_{s 1} & =\frac{2 \pi-\omega_{B 1}}{L_{1}} \\
\omega_{p 1} & =\frac{\omega_{B 1}}{L_{1}} \\
f_{s 1} & =f_{s} L_{1}
\end{aligned}
$$
\]

Let the $\omega_{s 2}, \omega_{p 2}, \delta_{s 2}, \delta_{p 2}, \omega_{B 2}, f_{s 2}, N_{2}$ represent the corresponding parameters for the second stage filter $H_{2}(z)$. Since the output of $H_{1}(z)$, is bandlimited to $\frac{\omega_{B 1}}{L_{1}}$, we have

$$
\begin{aligned}
\omega_{B 2} & =\frac{\omega_{B 1}}{L_{1}} \\
\omega_{s 2} & =\frac{2 \pi-\omega_{B 2}}{L_{2}} \\
\omega_{p 2} & =\frac{\omega_{B 2}}{L_{1}} \\
f_{s 2} & =f_{s} L_{2}
\end{aligned}
$$

For cascaded filters, the passband ripples get added and the stopband ripples remain the same. Hence, we choose

$$
\begin{aligned}
& \delta_{s 1}=\delta_{s 2}=\delta_{s}=0.005 \\
& \delta_{p 1}=\delta_{p 2}=\frac{\delta_{p}}{2}=0.005
\end{aligned}
$$

Table 1, gives the parameters for various choices of L_{1} and L_{2}. Table 2 compares the filters orders and computational complexities for various realizations of the interpolation filter. From the table, the two stage implementation with 5 -fold interpolation filter followed by 4 -fold interpolation filter gives the best performance. This combination is ≈ 4.1 times faster compared to the 1-stage implementation.

$\left(L_{1}, L_{2}\right)$	1-stage	$(2,10)$	$(10,2)$	$(4,5)$	$(5,4)$
$\omega_{B 1}=\omega_{B}$	0.8	0.8	0.8	0.8	0.8
$\omega_{s 1}=\frac{2 \pi-\omega_{B 1}}{L_{1}}$	0.2742	2.7416	0.5483	1.3708	1.9066
$\omega_{p 1}=\frac{\omega_{B 1}}{L_{1}}$	0.04	0.4	0.08	0.2	0.16
$f_{s 1}=f_{s} \times L_{1}(\mathrm{~Hz})$	144000	14400	72000	28800	36000
$\omega_{B 2}=\omega_{B 1}$	-	0.4	0.08	0.2	0.16
$\omega_{s 2}=\frac{2 \pi-\omega_{B 2}}{L_{2}}$	-	0.5883	3.1016	1.2166	1.5308
$\omega_{p 2}=\frac{2 \pi-\omega_{B 2}}{L_{2}}$	-	0.04	0.04	0.04	0.04
$f_{s 2}=f_{s 1} \times L_{2}(\mathrm{~Hz})$	-	144000	144000	144000	144000

Table 1. Filter design parameters for 20 fold 2 stage interpolation filters. L_{1} fold interpolation filter is followed by L_{2} fold interpolation filter.

	$\left(L_{1}, L_{2}\right)$	1-stage	$(2,10)$	$(10,2)$	$(4,5)$	$(5,4)$
Herrmann et al.	Filter order N_{1}	57	7	31	13	16
	complexity $C_{1}=f_{s 1} N_{1}$ of $H_{1}(z)(\mathrm{mult} / \mathrm{sec})$	8208000	100800	2304000	50400	576000
	Filter order N_{2}	-	27	5	13	10
	complexity $\mathrm{C}_{2}=f_{s 2} \mathrm{~N}_{2}$ of $\mathrm{H}_{2}(z)$	-	3888000	720000	1872000	1440000
	Overall complexity $C_{1}+C_{2}$ (mult/sec)	8208000	3988800	3024000	2246400	2016000
Bellanger' formula	Filter order N_{1}	77	9	42	17	21
	complexity $C_{1}=f_{s 1} N_{1}$ of $H_{1}(z)(\mathrm{mult} / \mathrm{sec})$	11088000	129600	3024000	489600	756000
	Filter order N_{2}	-	36	7	17	13
	complexity $\mathrm{C}_{2}=f_{s 2} \mathrm{~N}_{2}$ of $\mathrm{H}_{2}(z)$	-	5184000	1008000	2448000	1872000
	Overall complexity $C_{1}+C_{2}$ (mult/sec)	11088000	5313600	4032000	2937600	2628000

TABLE 2. Comparison of filter orders and computational complexity of 20 fold 2 stage interpolation filters. $\delta_{s 1}=\delta_{s 2}=0.005 . \quad \delta_{p 1}=\delta_{p 2}=0.005 . \quad D_{\infty}\left(\delta_{p 1}, \delta_{s 1}\right)=D_{\infty}\left(\delta_{p 2}, \delta_{s 2}\right)=2.3032$. $D_{\infty}\left(\delta_{p}, \delta_{s}\right)=2.135$

Problem 4. For the filter $H(z)$, we identify $H_{0}(z), H_{1}(z)$ and $H_{2}(z)$ such that

$$
H(z)=H_{0}\left(z^{3}\right)+z^{-1} H_{1}\left(z^{3}\right)+z^{-2} H_{1}\left(z^{3}\right)
$$

We identify $H_{00}(z), H_{01}(z), H_{10}(z), H_{11}(z), H_{20}(z), H_{21}(z)$ such that

$$
\begin{aligned}
& H_{0}(z)=H_{00}\left(z^{2}\right)+z^{-1} H_{01}\left(z^{2}\right), \\
& H_{1}(z)=H_{10}\left(z^{2}\right)+z^{-1} H_{11}\left(z^{2}\right), \\
& H_{2}(z)=H_{20}\left(z^{2}\right)+z^{-1} H_{21}\left(z^{2}\right) .
\end{aligned}
$$

The efficient implementation of fractional sampling rate alteration starting from decimation filter is as follows.

Let F be the sample rate of $x[n]$ and N be the order of the filter $H(z)$. Note that the sum of filter orders of $\left\{H_{i j}(z)\right\}_{i=0,1,2 ; j=0,1}$ is equal to N. Also, the filters $H_{i j}(z)$ each operates at the rate of $F / 3 \mathrm{samples} / \mathrm{sec}$. Hence the overall computational complexity is $N \frac{F}{3}$ multiplications/second.

The efficient implementation derived in the class starting from the interpolation stage has the same number of filters operating at the rate of $F / 3$ samples per second. The overall computational complexity in this case is also $N \frac{F}{3}$ multiplications/second.

[^0]: ${ }^{1}$ O. Herrmann et al., "Practical design rules for optimum low pass FIR digital filters", Bell-sys tech.Journal, vol 52, no.2, July 1973.
 ${ }^{2} \mathrm{M}$. Bellanger, "On computational complexity in digital filters, 'Proc. The Eurioeab Conference on Circuit Theory \& Design, The Haugue, The Netherlands, pp. 58-63, August 1981.

