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Problem 1. (Frequency domain analysis) From Figure 1,
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Figure 1. Comparing the outputs by changing the order of decimator and upsampler.

To prove that Y1 (z) = Y2 (z)∀X (z), it is necessary and sufficient to satisfy the following condition:{
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Since ej2πk = 1∀k ∈ Z, we have ej
2πiL
M = ej

2π(iL mod M)
M . Hence, the equivalent condition is

{(iL) mod M | i = 0, 1, · · · ,M − 1} = {0, 1, · · · ,M − 1} . (3)
Let 0 ≤ i1 ≤ M − 1 and 0 ≤ i2 ≤ M − 1 such that i1 6= i2. Without loss of generality, consider i1 < i2. Using

the following identity on modulo operation
1



(a− b) mod M = (a mod M − b mod M) mod M,

we have,

((i1L) mod M − (i2L) mod M) mod M = ((i1 − i2)L) mod M. (4)

Case L and M are relatively prime:
Since 0 < i1 − i2 < M , and gcd (L,M) = 1, ((i1 − i2)L) mod M 6= 0. Therefore from (4),

((i1L) mod M − (i2L) mod M) mod M 6= 0,

=⇒ (i1L) mod M 6= (i2L) mod M.

We have proved that i1 6= i2 =⇒ (i1L) mod M 6= (i2L) mod M ∀i1, i2 ∈ {0, 1, 2 · · · ,M − 1} . Therefore, when
gcd (L,M) = 1, equation (3) holds true.

Case M divides L:
Let L = P ×M, P > 1. Therefore, it is possible to chose i1 = i2 +M . Under this condition,

((i1 − i2)L) mod M = (ML) mod M = 0.

Therefore,

((i1L) mod M − (i2L) mod M) mod M = 0

=⇒ (i1L) mod M = (i2L) mod M.

We have shown that for some choice of i1 6= i2, (i1L) mod M = (i2L) mod M . Hence, the values {(iL) mod M}M−1i=0

are not distinct. Therefore, when M divides L, equation (3) does not hold true.
Case gcd (M,L) = G > 1:

LetM = G×PM and L = G×PL. We can chose i1 = i2+G. Under this condition, ej2π
iL
M = e
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iPL
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has PM distinct values. Therefore, equation (3) does not hold true under this

condition.
Hence, the equation (3) holds true iff L and M are relatively prime. This proves that M fold decimator and L

fold upsampler blocks can be interchanged iff L and M are relatively prime.
(Time domain analysis) From the definitions of decimator and upsampler,
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Similarly,
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From equations (5) and (6), the outputs are same iff n is a multiple of L when ever Mn is a multiple of L.
Case gcd(L,M) = 1: Trivial in this case that L divides Mn ⇐⇒ L divides n.
Case gcd(L,M) = P 6= 1: Let L = P × Q. In this case L divides Mn when ever Q divides n. Hence

L divides Mn; L divides n.
Therefore, the outputs are same iff L and M are relatively prime.



Problem 2. We use the identities in Figure 2 to simplify the given transformations.
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Figure 2. Identities related to decimation, upsampling and delay operations.

(Part a)
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(Part b)

↑ 7 z−8 ↓ 3 ↑ 3 z12 ↓ 14

↑ 7 z−8 ↓ 3 z4 ↑ 3 ↓ 14

↑ 7 z−8 z12 ↓ 3 ↑ 3 ↓ 14

↑ 7 z4 ↓ 3 ↑ 3 ↓ 14

↑ 7 z4 ↓ 3 ↓ 14 ↑ 3

↑ 7 z4 ↓ 7 ↓ 6 ↑ 3
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Therefore, Y (z) = 0.



Problem 3. Figure 3 indicates the stopband and passband frequencies for the lowpass filter when the signal is
bandlimited to ωB . We have

ωs =
2π − ωB

L
= 0.2742,

ωp =
ωB
L

= 0.04.
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Figure 3. The frequency response at the output of upsampler is shown. The stopband and
passband frequencies for the filter are also indicated.

The stopband and passband ripple amplitudes are

δs = 0.005,

δp = 0.01.

Let N be the filter order of H (z) and fs indicate the sampling frequency at the output of H (z). The filter does
N multiplications to give one output sample. Hence, the computational complexity of the efficient implementation
of the interpolation filter is Nfs multiplications per second.

The filter order N is estimated based on the following empirical formula by Herrmann et al.1

N =
D∞(δp, δs)

(ωs − ωp) /2π
D∞(δp, δs) = (log10 δs)

[
a1 (log10 δp)

2
+ a2 log10 δp + a3

]
+
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2
+ a5 log10 δp + a6

]
where a1 = 5.3e− 3, a2 = 0.071, a3 = −0.4761, a4 = −0.0026, a5 = −0.5941, a6 = −0.4278.
A simpler but less accurate empirical formula is given by Bellanger2:

N =
2 log10 (1/δsδp)

3 (ωs − ωp) /2π
.

For a signal bandlimited to3 KHz, the Nyquist sampling rate is 6 KHz and 20% oversampling is at 7.2 KHz.
Hence,

fs = 7200 Hz.

↑ L1 H1(z) ↑ L2 H2(z)
x[n] y[n]

Figure 4. 2 stage interpolation filter.

For the 2-stage interpolator shown in Figure 4, for the filter H1 (z), let the stopband and passband frequencies
be ωs1 and ωp1. Let the stopband and passband ripples be δs1 and δp1 respectively. Let the input to H1 (z) be

1O. Herrmann et al., “Practical design rules for optimum low pass FIR digital filters”, Bell-sys tech.Journal, vol 52, no.2, July 1973.
2M. Bellanger, “On computational complexity in digital filters,”Proc. The Eurioeab Conference on Circuit Theory & Design, The

Haugue, The Netherlands, pp. 58-63, August 1981.



bandlimited to ωB1 and let fs1 be the sampling frequency at the output of H1 (z) and N1 be the filter order. We
have

ωB1 = ωB

ωs1 =
2π − ωB1

L1

ωp1 =
ωB1

L1

fs1 = fsL1.

Let the ωs2, ωp2, δs2, δp2, ωB2, fs2, N2 represent the corresponding parameters for the second stage filter H2 (z).
Since the output of H1 (z), is bandlimited to ωB1

L1
, we have

ωB2 =
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fs2 = fsL2.

For cascaded filters, the passband ripples get added and the stopband ripples remain the same. Hence, we choose

δs1 = δs2 = δs = 0.005,

δp1 = δp2 =
δp
2

= 0.005.

Table 1, gives the parameters for various choices of L1 and L2. Table 2 compares the filters orders and computa-
tional complexities for various realizations of the interpolation filter. From the table, the two stage implementation
with 5-fold interpolation filter followed by 4-fold interpolation filter gives the best performance. This combination
is ≈ 4.1 times faster compared to the 1-stage implementation.

(L1, L2) 1-stage (2, 10) (10, 2) (4, 5) (5, 4)

ωB1 = ωB 0.8 0.8 0.8 0.8 0.8

ωs1 = 2π−ωB1

L1
0.2742 2.7416 0.5483 1.3708 1.9066

ωp1 = ωB1

L1
0.04 0.4 0.08 0.2 0.16

fs1 = fs × L1 (Hz) 144000 14400 72000 28800 36000
ωB2 = ωB1 - 0.4 0.08 0.2 0.16

ωs2 = 2π−ωB2

L2
- 0.5883 3.1016 1.2166 1.5308

ωp2 = 2π−ωB2

L2
- 0.04 0.04 0.04 0.04

fs2 = fs1 × L2 (Hz) - 144000 144000 144000 144000

Table 1. Filter design parameters for 20 fold 2 stage interpolation filters. L1 fold interpolation
filter is followed by L2 fold interpolation filter.



(L1, L2) 1-stage (2, 10) (10, 2) (4, 5) (5, 4)

Herrmann et al.

Filter order N1 57 7 31 13 16
complexity C1 = fs1N1 of H1 (z) (mult/sec) 8208000 100800 2304000 50400 576000

Filter order N2 - 27 5 13 10
complexity C2 = fs2N2 of H2 (z) - 3888000 720000 1872000 1440000

Overall complexity C1+C2(mult/sec) 8208000 3988800 3024000 2246400 2016000

Bellanger’ formula

Filter order N1 77 9 42 17 21
complexity C1 = fs1N1 of H1 (z) (mult/sec) 11088000 129600 3024000 489600 756000

Filter order N2 - 36 7 17 13
complexity C2 = fs2N2 of H2 (z) - 5184000 1008000 2448000 1872000

Overall complexity C1+C2(mult/sec) 11088000 5313600 4032000 2937600 2628000

Table 2. Comparison of filter orders and computational complexity of 20 fold 2 stage interpo-
lation filters. δs1 = δs2 = 0.005. δp1 = δp2 = 0.005. D∞ (δp1, δs1) = D∞ (δp2, δs2) = 2.3032.
D∞ (δp, δs) = 2.135



Problem 4. For the filter H(z), we identify H0 (z), H1 (z) and H2 (z) such that
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.

We identify H00 (z) , H01 (z) , H10 (z) , H11 (z) , H20 (z) , H21 (z) such that
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2) + z−1H01(z

2),

H1 (z) = H10(z
2) + z−1H11(z

2),

H2 (z) = H20(z
2) + z−1H21(z

2).

The efficient implementation of fractional sampling rate alteration starting from decimation filter is as follows.
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Let F be the sample rate of x[n] and N be the order of the filter H(z). Note that the sum of filter orders of
{Hij (z)}i=0,1,2;j=0,1 is equal to N . Also, the filters Hij (z) each operates at the rate of F/3 samples/sec. Hence
the overall computational complexity is N F

3 multiplications/second.
The efficient implementation derived in the class starting from the interpolation stage has the same number of

filters operating at the rate of F/3 samples per second. The overall computational complexity in this case is also
N F

3 multiplications/second.


