INDIAN INSTITUTE OF SCIENCE

E9-252: MATHEMATICAL METHODS AND TECHNIQUES IN SIGNAL PROCESSING HOME WORK \#1 - SOLUTIONS, FALL 2014

INSTRUCTOR: SHAYAN G. SRINIVASA

TEACHING ASSISTANTS: ANKUR RAINA, CHAITANYA KUMAR MATCHA

Problem 1. The noise-free signal is

$$
y[n]=n^{a} u[n-1],
$$

where a is an integer and $u[n]$ is unit step function. Let $Y(z)$ denote the z-transform of the signal. The signal is causal and hence the region of convergence of $Y(z)$ is $|z| \geq 1$.

Case $a \geq 0$:
The z-transform of unit step function is

$$
\sum_{n=-\infty}^{\infty} u[n] z^{-n}=\frac{1}{1-z^{-1}}=\frac{z}{z-1}
$$

Differentiating w.r.t, z on both sides we have,

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} n u[n] z^{-n-1} & =\frac{1}{(z-1)^{2}} \\
\Longrightarrow \sum_{n=-\infty}^{\infty} n u[n-1] z^{-n} & =\frac{z}{(z-1)^{2}}
\end{aligned}
$$

Repeating the differentiation $a-1$ more times, we get

$$
Y(z)=\sum_{n=-\infty}^{\infty} n^{a} u[n] z^{-n}=\frac{f(z)}{(z-1)^{a+1}}
$$

for some polynomial $f(z)$.
Therefore $z=1$ is $(a+1)^{\text {th }}$ order pole i.e., 1 is $(a+1)^{\text {th }}$ order mode for the system.
Case $a \leq-2$:
We have

$$
\begin{aligned}
Y(z) & =\sum_{n=1}^{\infty} n^{a} z^{-n} \\
& \leq \sum_{n=1}^{\infty} n^{a}|z|^{-n} \\
& \leq \sum_{n=1}^{\infty} n^{a} \quad(|z| \geq 1) \\
& \leq \sum_{n=1}^{\infty} n^{-2} \quad(a \leq-2) \\
& =\frac{\pi}{6}
\end{aligned}
$$

Therefore, $Y(z)<\infty \forall|z| \geq 1$. Hence there are no poles.
Case $a=-1$:

We have

$$
\begin{aligned}
Y(z) & =\sum_{n=1}^{\infty} \frac{1}{n} z^{-n} . \\
\Longrightarrow Y(1) & =\sum_{n=1}^{\infty} \frac{1}{n}=\infty .
\end{aligned}
$$

Therefore $z=1$ is a pole.

Problem 2. 1.4.16 We have

$$
\begin{aligned}
\mathbf{x}[t+1] & =\mathbf{A x}[t]+\mathbf{b} f[t] \\
y[t] & =\mathbf{c}^{T} \mathbf{x}[t]+d f[t]
\end{aligned}
$$

Taking z-Transform, we have

$$
\begin{aligned}
& \mathbf{X}(z)=(z \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} F(z) \\
& Y(z)=\mathbf{c}^{T} \mathbf{X}(z)+d F(z)
\end{aligned}
$$

The system transfer function is given by

$$
H(z)=\frac{Y(z)}{F(z)}=\mathbf{c}^{T}(z \mathbf{I}-\mathbf{A})^{-1} \mathbf{b}+d
$$

Similarly, for 1.22 , we have the system transfer function given by,

$$
\bar{H}(z)=\frac{Y(z)}{F(z)}=\overline{\mathbf{c}}^{T}(z \mathbf{I}-\overline{\mathbf{A}})^{-1} \overline{\mathbf{b}}+\bar{d}
$$

Substituting $\overline{\mathbf{A}}=\mathbf{T}^{-1} \mathbf{A T}, \overline{\mathbf{b}}=\mathbf{T}^{-1} \mathbf{b}, \overline{\mathbf{c}}=\mathbf{T}^{T} \mathbf{c}, \bar{d}=d$ in this equation,

$$
\begin{aligned}
\bar{H}(z) & =\mathbf{c}^{T} \mathbf{T}\left(z \mathbf{I}-\mathbf{T}^{-1} \overline{\mathbf{A}} \mathbf{T}\right)^{-1} \mathbf{T}^{-1} \mathbf{b}+d \\
& =\mathbf{c}^{T}\left(\mathbf{T}\left(z \mathbf{I}-\mathbf{T}^{-1} \overline{\mathbf{A}} \mathbf{T}\right) \mathbf{T}^{-1}\right)^{-1} \mathbf{b}+d \\
& =\overline{\mathbf{c}}^{T}(z \mathbf{I}-\overline{\mathbf{A}})^{-1} \overline{\mathbf{b}}+\bar{d} \\
\bar{H}(z) & =H(z)
\end{aligned}
$$

Therefore the system transfer functions are same. A and \bar{A} have same eigen values.
1.4.17 (Part 1) From state-space equations, we have

$$
\begin{equation*}
\mathbf{x}[t+1]=\mathbf{A} \mathbf{x}[t]+\mathbf{b} f[t] \tag{1}
\end{equation*}
$$

To prove,

$$
\begin{equation*}
\mathbf{x}[t]=\mathbf{A}^{t} \mathbf{x}[0]+\sum_{k=0}^{t-1} \mathbf{A}^{k} \mathbf{b} f[t-1-k] \tag{2}
\end{equation*}
$$

Step 1: For $t=1,(2)$ true from the state-space equation (1).
Step 2: Assume true for $t=n$, i.e.,

$$
\mathbf{x}[n]=\mathbf{A}^{n} \mathbf{x}[0]+\sum_{k=0}^{n-1} \mathbf{A}^{k} \mathbf{b} f[n-1-k]
$$

We need to prove that the equation (2) is true for $t=n+1$.

From state space equations, we have

$$
\begin{aligned}
\mathbf{x}[n+1] & =\mathbf{A} \mathbf{x}[n]+\mathbf{b} f[n] \\
& =\mathbf{A}^{n+1} \mathbf{x}[0]+\mathbf{A} \sum_{k=0}^{n-1} \mathbf{A}^{k} \mathbf{b} f[n-1-k]+\mathbf{b} f[n] \quad(\text { use } l=k+1) \\
& =\mathbf{A}^{n+1} \mathbf{x}[0]+\sum_{l=1}^{(n+1)-1} \mathbf{A}^{l} \mathbf{b} f[(n+1)-1-l]+\mathbf{b} f[n] \\
& =\mathbf{A}^{n+1} \mathbf{x}[0]+\sum_{l=0}^{(n+1)-1} \mathbf{A}^{l} \mathbf{b} f[(n+1)-1-l] .
\end{aligned}
$$

i.e., the equation (2) is true for $t=n+1$.

This proves the equation (2) by induction.
(b) For time varying case,

$$
\begin{aligned}
\mathbf{x}[t] & =\mathbf{A}[t-1] \mathbf{x}[t-1]+\mathbf{b}[t-1] f[t-1] \\
& =\mathbf{A}[t-1] \mathbf{A}[t-2] \mathbf{x}[t-2]+\mathbf{A}[t-1] \mathbf{b}[t-2] f[t-2]+\mathbf{b}[t-1] f[t-1] \\
& =\prod_{i=0}^{j} \mathbf{A}[t-1-i] \mathbf{x}[t-1-j]+\sum_{k=0}^{j}\left(\prod_{i=0}^{k} \mathbf{A}[t-1-i]\right) \mathbf{b}[t-1-k] f[t-1-k] \quad(j=1) \\
& \vdots \\
\mathbf{x}[t] & =\prod_{i=0}^{t-1} \mathbf{A}[t-1-i] \mathbf{x}[0]+\sum_{k=0}^{j}\left(\prod_{i=0}^{k} \mathbf{A}[t-1-i]\right) \mathbf{b}[t-1-k] f[t-1-k]
\end{aligned}
$$

Problem 3. Note the following relations between ceil and floor functions,

$$
\begin{gather*}
c(x)=-f(-x) \tag{3}\\
c(x)-f(x)= \begin{cases}0 & \text { if } x \text { is an integer } \\
1 & \text { otherwise }\end{cases} \tag{4}
\end{gather*}
$$

Since X is a continuous random variable,

$$
\begin{equation*}
\operatorname{Pr}[X \text { is an integer }]=0 \tag{5}
\end{equation*}
$$

Let μ_{c} and μ_{f} be the means of $c(x)$ and $f(x)$ respectively. Let σ_{c}^{2} and σ_{f}^{2} be the respective variances.
From (3),

$$
\begin{align*}
\mu_{c} & =-\mathbb{E}[f(-X)] \\
& =-\int_{-\infty}^{\infty} f(-x) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}\right\} d x \\
& =-\int_{-\infty}^{\infty} f(y) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{y^{2}}{2 \sigma^{2}}\right\} d y \quad(\text { using } y=-x) \\
\mu_{c} & =-\mu_{f} \tag{6}
\end{align*}
$$

From (4) and (5),

$$
\begin{align*}
& \mu_{c}-\mu_{f}=0 \times \operatorname{Pr}[X \text { is an integer }]+1 \times \operatorname{Pr}[X \text { is not an integer }] \\
& \mu_{c}-\mu_{f}=1 \tag{7}
\end{align*}
$$

From (6) and (7),

$$
\begin{aligned}
& \mu_{c}=0.5 \\
& \mu_{f}=-0.5
\end{aligned}
$$

From (4) and (5),

$$
\begin{aligned}
\mathbb{E}\left[(c(X))^{2}\right] & =\mathbb{E}\left[(1+f(X))^{2}\right] \\
& =1+2 \mathbb{E}[f(X)]+\mathbb{E}\left[(f(X))^{2}\right] \\
\mathbb{E}\left[(c(X))^{2}\right] & =\mathbb{E}\left[(f(X))^{2}\right]
\end{aligned}
$$

Therefore, the variances are related as

$$
\begin{aligned}
\sigma_{c}^{2} & =\mathbb{E}\left[(c(X))^{2}\right]-\mu_{c}^{2} \\
& =\mathbb{E}\left[(f(X))^{2}\right]-\mu_{f}^{2} \\
\sigma_{c}^{2} & =\sigma_{f}^{2}
\end{aligned}
$$

There is no closed form expression for the variance. The variance can be computed using the p.m.fs of the ceil and floor given by

$$
\begin{aligned}
\operatorname{Pr}[c(X)=n] & =\operatorname{Pr}[n-1<X \leq n] \\
\operatorname{Pr}[f(X)=n] & =\operatorname{Pr}[n \leq X<n+1]
\end{aligned}
$$

Following MATLAB code computes the mean and variances of ceil and floor functions. When $\sigma^{2}=1, \sigma_{c}^{2}=\sigma_{f}^{2} \approx$ 0.5834 .

```
x_range = - 100:100;
pmf_ceil = 0.5*(erf(x_range) - erf (x_range - 1));
pmf_floor = 0.5*(erf(x_range +1) - erf (x_range) );
mean_ceil = x_range*pmf_ceil'
mean_floor = x__range*pmf_floor'
var_ceil = (x_range.^2)*pmf_ceil' - mean_ceil^2
var_floor = (x_range.^2)*pmf_floor` - mean_floor`2
```

Problem 4. 2.10.52 Sufficient to prove that \mathcal{V}^{\perp} forms a closed group under addition and scalar multiplication. Since, for each $\underline{x} \in \mathcal{V}, \underline{x} \in \mathcal{S}$ also holds true, and hence the remaining properties will hold true.
(1) If $\underline{x}, \underline{y} \in \overline{\mathcal{V}}^{\perp}$, then $\langle\underline{x}, \underline{v}\rangle=\langle\underline{y}, \underline{v}\rangle=0 \forall \underline{v} \in \mathcal{V} . \Longrightarrow\langle\underline{x}+\underline{y}, \underline{v}\rangle=0 \Longrightarrow \underline{x}+\underline{y} \in \mathcal{V}^{\perp}$.
(2) $\langle\underline{0}, \underline{v}\rangle=0 \forall \mathcal{V}$. Therefore $\underline{0} \in \overline{\mathcal{V}}^{\perp} . \underline{0}+\underline{x}=\underline{x}+\underline{x}=\underline{x} \forall \underline{x} \in \overline{\mathcal{V}}^{\perp}$ is trivially satisfied since $\underline{x} \in \mathcal{S}$.
(3) Let $\underline{x} \in \mathcal{V}^{\perp}$. Since $\underline{x} \in \mathcal{S}, \exists \underline{y} \in \mathcal{S}$ such that $\underline{x}+\underline{y}=\underline{0} . \Longrightarrow\langle\underline{y}, \underline{v}\rangle=-\langle\underline{x}, \underline{v}\rangle=0 \forall \underline{v} \in \overline{\mathcal{V}}^{\perp}$. Therefore $\underline{y} \in \mathcal{V}^{\perp}$.
(4) For $\underline{x}, \underline{y}, \underline{z} \in \mathcal{V}^{\perp}, \underline{x}+(\underline{y}+\underline{z})=(\underline{x}+\underline{y})+\underline{z}$ is trivially satisfied since $\underline{x}, \underline{y}, \underline{z} \in \mathcal{S}$.
(5) If $\underline{x} \in \overline{\mathcal{V}}^{\perp}$ and a is a scalar, then $\langle a \underline{x}, \underline{v}\rangle=a\langle\underline{x}, \underline{v}\rangle=0 \forall \underline{v} \in \mathcal{V}$. Therefore $a \underline{x} \in \mathcal{V}^{\perp}$
2.12.57 Sufficient to prove that $\mathcal{V} \cap \mathcal{W}$ forms a closed group under addition and scalar multiplication. Since, for each $\underline{x} \in \mathcal{V} \cap \mathcal{W}, \underline{x} \in \mathcal{S}$ also holds true, and hence the remaining properties will hold true.
(1) Let $\underline{x}, \underline{y} \in \mathcal{V} \cap \mathcal{W}$. Then $\underline{x}+\underline{y} \in \mathcal{V}$ and $\underline{x}+\underline{y} \in \mathcal{W}$. Hence, $\underline{x}+\underline{y} \in \mathcal{V} \cap \mathcal{W}$.
(2) $\underline{0} \in \mathcal{V}$ and $\underline{0} \in \mathcal{W}$ and hence $\underline{0} \in \mathcal{V} \cap \mathcal{W}$.
(3) Let $\underline{x} \in \mathcal{V} \cap \mathcal{W}$. Its additive inverse $\underline{y} \in \mathcal{S}$ is unique. Since \mathcal{V} and \mathcal{W} are subspaces, $\underline{y} \in \mathcal{V}$ and $\underline{y} \in \mathcal{W}$. Therefore $\exists \underline{y} \in \mathcal{V} \cap \mathcal{W}$ such that $\underline{x}+\underline{y}=\underline{0}$.
(4) For $\underline{x}, \underline{y}, \underline{z} \in \mathcal{V} \cap \mathcal{W}, \underline{x}+(\underline{y}+\underline{z})=(\underline{x}+\underline{y})+\underline{z}$ is trivially satisfied since $\underline{x}, \underline{y}, \underline{z} \in \mathcal{S}$.
(5) Let $\underline{x} \in \mathcal{V} \cap \mathcal{W}$ and a be a scalar. Since $\overline{\mathcal{V}}$ and \mathcal{W} are subspaces, $a \underline{x} \in \mathcal{V}$ and $a \underline{x} \in \mathcal{W}$. Therefore $a \underline{x} \in \mathcal{V} \cap \mathcal{W}$.
2.12.63 Let \mathcal{B}_{v} be an orthonormal basis for \mathcal{V}. Let $\mathcal{B}=\left\{\underline{v} \in \mathcal{B}_{v} \mid \exists \underline{w} \in \mathcal{W}\right.$ such that $\left.\langle\underline{v}, \underline{w}\rangle \neq 0\right\}$.

Hence, we can chose an orthonormal basis \mathcal{B}_{w} for \mathcal{W} such that $\mathcal{B} \subset \mathcal{B}_{w}$.
Note that \mathcal{B} forms orthonormal basis for $\mathcal{V} \cap \mathcal{W}$ and $\mathcal{B}_{v} \cup \mathcal{B}_{w}$ forms an orthonormal basis for $\mathcal{V}+\mathcal{W}$.
Therefore,

$$
\begin{aligned}
\operatorname{dim}(\mathcal{V}+\mathcal{W}) & =|\mathcal{V}+\mathcal{W}| \\
& =|\mathcal{V}|+|\mathcal{W}|-|\mathcal{V} \cap \mathcal{W}| \\
\operatorname{dim}(\mathcal{V}+\mathcal{W}) & =\operatorname{dim}(\mathcal{V})+\operatorname{dim}(\mathcal{W})-\operatorname{dim}(\mathcal{V} \cap \mathcal{W})
\end{aligned}
$$

where $|\mathbf{A}|$ represents the number of elements in the set \mathbf{A}.

We have,

$$
\begin{aligned}
\mathcal{V} \oplus \mathcal{W} & =(\mathcal{V} \oplus\{\underline{0}\})+(\{\underline{0}\} \oplus \mathcal{V}), \\
\operatorname{dim}(\mathcal{V} \oplus\{\underline{0}\}) & =\operatorname{dim}(\mathcal{V}), \\
\operatorname{dim}(\mathcal{W} \oplus\{\underline{0}\}) & =\operatorname{dim}(\mathcal{W}), \\
(\mathcal{V} \oplus\{\underline{0}\}) \cap(\{\underline{0}\} \oplus \mathcal{V}) & =\{\underline{0} \oplus \underline{0}\} .
\end{aligned}
$$

Therefore,

$$
\operatorname{dim}(\mathcal{V} \oplus \mathcal{W})=\operatorname{dim}(\mathcal{V})+\operatorname{dim}(\mathcal{W})
$$

Problem 5. (Part 1) Computing the inner products and norms of the signals, we have

$$
\begin{aligned}
\left\langle f_{1}(t), f_{2}(t)\right\rangle & =\frac{5}{48} T, \\
\left\langle f_{2}(t), f_{3}(t)\right\rangle & =\frac{5}{48} T, \\
\left\langle f_{1}(t), f_{3}(t)\right\rangle & =0, \\
\left\|f_{1}(t)\right\|^{2}=\left\|f_{2}(t)\right\|^{2} & =\left\|f_{3}(t)\right\|^{2}=\frac{T}{6} .
\end{aligned}
$$

The distance between the vectors \underline{a} and \underline{b} is given by $\|\underline{a}-\underline{b}\|=\sqrt{\|\underline{a}\|^{2}+\|\underline{b}\|^{2}-2\langle\underline{a}, \underline{b}\rangle}$. The distance between the signals are

$$
\begin{aligned}
\left\|f_{1}(t)-f_{2}(t)\right\| & =\sqrt{\frac{T}{6}+\frac{T}{6}-\frac{5 T}{24}}=\sqrt{\frac{T}{8}} \\
\left\|f_{2}(t)-f_{3}(t)\right\| & =\sqrt{\frac{T}{6}+\frac{T}{6}-\frac{5 T}{24}}=\sqrt{\frac{T}{8}} \\
\left\|f_{1}(t)-f_{3}(t)\right\| & =\sqrt{\frac{T}{6}+\frac{T}{6}-0}=\sqrt{\frac{T}{3}}
\end{aligned}
$$

The angle between vectors \underline{a} and \underline{b} is given by $\cos ^{-1}\left(\frac{\langle\underline{a}, \underline{b}\rangle}{\|\underline{a}\|\|\underline{\|}\|}\right)$.
Therefore, the angles between the signals are given by

$$
\begin{aligned}
\theta_{12} & =\cos ^{-1}\left(\frac{5}{8}\right) \\
\theta_{23} & =\cos ^{-1}\left(\frac{5}{8}\right) \\
\theta_{13} & =\frac{\pi}{2}
\end{aligned}
$$

An orthonormal basis can be derived using Gram-Schmidt ortho-normalization procedure. Since $f_{1}(t)$ and $f_{3}(t)$ are orthogonal, normalizing them gives two of the basis. Let $v_{1}(t), v_{2}(t)$ and $v_{3}(t)$ be orthonormal basis of the signal space.

$$
\begin{aligned}
v_{1}(t) & =\frac{f_{1}(t)}{\left\|f_{1}(t)\right\|}=\sqrt{\frac{6}{T}} f_{1}(t) \\
v_{2}(t) & =\frac{f_{3}(t)}{\left\|f_{3}(t)\right\|}=\sqrt{\frac{6}{T}} f_{3}(t) \\
v_{3}(t) & =\frac{f_{2}(t)-\left\langle f_{2}(t), v_{1}(t)\right\rangle v_{1}(t)-\left\langle f_{2}(t), v_{2}(t)\right\rangle v_{2}(t)}{\left\|f_{2}(t)-\left\langle f_{2}(t), v_{1}(t)\right\rangle v_{1}(t)-\left\langle f_{2}(t), v_{2}(t)\right\rangle v_{2}(t)\right\|} \\
& =\frac{f_{2}(t)-\frac{5}{8} f_{1}(t)-\frac{5}{8} f_{3}(t)}{\left\|f_{2}(t)-\frac{5}{8} f_{1}(t)-\frac{5}{8} f_{3}(t)\right\|} \\
v_{3}(t) & =\sqrt{\frac{3}{7 T}}\left(8 f_{2}(t)-5 f_{1}(t)-5 f_{3}(t)\right)
\end{aligned}
$$

In the signal space with $v_{1}(t), v_{2}(t)$ and $v_{3}(t)$ as the orthonormal basis, the signals $f_{1}(t), f_{2}(t)$ and $f_{3}(t)$ are represented by the following vectors as shown in Figure 1.

$$
\begin{aligned}
\underline{f}_{1} & =\left(\sqrt{\frac{T}{6}}, 0,0\right) \\
\underline{f}_{2} & =\left(\frac{5}{48} \sqrt{6 T}, \frac{5}{48} \sqrt{6 T}, \frac{\sqrt{21 T}}{24}\right) \\
\underline{f}_{3} & =\left(0, \sqrt{\frac{T}{6}}, 0\right)
\end{aligned}
$$

Figure 1. Signals $f_{1}(t), f_{2}(t)$ and $f_{3}(t)$ are represented in signal space.
(Part 2)Received signal $r(t)=f_{i}(t)+\delta\left(t-t_{i}\right)$, where $t_{i} \sim U\left(S u p p\left(f_{i}(t)\right)\right)$. The noise signals are shown in Figure 2.

Figure 2. Noise signals corresponding to the input signals $f_{1}(t), f_{2}(t)$ and $f_{3}(t)$ are shown. The noise is an impulse that occurs at a random time instant. This random time instant is uniformly distributed on the support of the corresponding signal.

We have,

$$
\left\langle v_{i}(t), \delta(t-T)\right\rangle=v_{i}(T), \quad i=1,2,3
$$

Therefore, the projection of $\delta\left(t-t_{i}\right)$ onto the vector space defined by the basis $v_{1}(t), v_{2}(t)$ and $v_{3}(t)$ is given by the parameterized curve

$$
\left\{\left(v_{1}(t), v_{2}(t), v_{3}(t)\right) \mid t \in \operatorname{Supp}\left(f_{i}(t)\right)\right\}, \quad i=1,2,3
$$

Hence, when the signal $s_{i}(t)$ is transmitted, the received signal lies on the parameterized curve given by

$$
\mathbf{F}_{i}=\left\{\underline{f}_{i}+\left(v_{1}(t), v_{2}(t), v_{3}(t)\right) \mid t \in \operatorname{Supp}\left(f_{i}(t)\right)\right\}, \quad i=1,2,3
$$

The received signal lies in the region given by $\mathbf{F}_{1} \cup \mathbf{F}_{2} \cup \mathbf{F}_{3}$. This is shown in Figure 3. Note that the three curves $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} do not intersect.

Figure 3. The signals $f_{i}(t)$ are shown. The regions \mathbf{F}_{i} corresponding to received signal with noise when a signal $f_{i}(t), i=1,2,3$ is transmitted are also shown. The regions are V -shaped parametric curves and do not intersect.

We have the likelihood probability densities

$$
p\left(\underline{r} \mid \underline{s}_{i}\right) \quad\left\{\begin{array}{ll}
\neq 0, & \underline{r} \in \mathbf{F}_{i} \\
=0, & \underline{r} \notin \mathbf{F}_{i}
\end{array}, \quad i=1,2,3 .\right.
$$

Therefore the aposterior probability densities are

$$
p\left(\underline{f}_{i} \mid \underline{r}\right)=p\left(\underline{r}^{\mid} \underline{f}_{i}\right) \frac{\operatorname{Pr}\left[\underline{f}_{i}\right]}{p(\underline{r})} \quad\left\{\begin{array}{ll}
\neq 0, & \underline{r} \in \mathbf{F}_{i} \\
=0, & \underline{r} \notin \mathbf{F}_{i}
\end{array}, \quad i=1,2,3\right.
$$

Note that the regions $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} do not intersect. Therefore, if $\underline{r} \in \mathbf{F}_{i}$, the aposterior probability is maximized for \underline{f}_{i}.

Therefore the optimal decision as are given by

$$
\hat{f}(t)= \begin{cases}f_{1}(t), & \underline{r} \in \mathbf{R}_{1}=\mathbf{F}_{2}^{c} \cap \mathbf{F}_{3}^{c} \\ f_{2}(t), & \underline{r} \in \mathbf{R}_{1}=\mathbf{F}_{2} \\ f_{3}(t), & \underline{r} \in \mathbf{R}_{1}=\mathbf{F}_{3}\end{cases}
$$

The misclassification error is given by

$$
\begin{aligned}
P_{e} & =\sum_{i=1,2,3} \operatorname{Pr}\left[f_{i}(t)\right] \operatorname{Pr}\left[\hat{f}(t) \neq f_{i}(t) \mid f_{i}(t)\right] \\
& =\sum_{i=1,2,3} \operatorname{Pr}\left[f_{i}(t)\right] \operatorname{Pr}\left[\underline{r} \in \mathbf{R}_{1}^{c} \mid f_{i}(t)\right] \\
& =\sum_{i=1,2,3} \operatorname{Pr}\left[f_{i}(t)\right] \times 0 \\
P_{e} & =0
\end{aligned}
$$

Remark: The orthonormal basis can be different depending on the order of signals used during Gram-Schmidt ortho-normalization.

