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Quantum Threshold Voltage Modeling of Short
Channel Quad Gate Silicon Nanowire Transistor

P. Rakesh Kumar and Santanu Mahapatra, Member, IEEE

Abstract—In this paper, a physically based analytical quan-
tum linear threshold voltage model for short channel quad gate
MOSFETs is developed. The proposed model, which is suitable
for circuit simulation, is based on the analytical solution of 3-D
Poisson and 2-D Schrödinger equation. Proposed model is fully
validated against the professional numerical device simulator for a
wide range of device geometries and also used to analyze the effect
of geometry variation on the threshold voltage.

Index Terms—CMOS, compact modeling, multigate transistors,
quantum effects.

I. INTRODUCTION

QUAD GATE MOSFETs has attracted much attention for
downscaling CMOS technology up to 10 nm channel

length due to its maximum gate control over the channel and high
current drive capability [1]. In such transistors, the short channel
effect (SCE) is controlled by the device geometry, and hence,
an undoped (or lightly doped) ultrathin body is used to sustain
the channel. Since the quantization of electron energy cannot be
ignored in such ultrathin body devices, it is extremely important
to consider quantum effects in their threshold voltage models.
To the best of our knowledge, quantum threshold voltage model
for short channel devices have not yet been reported apart from
the recent long channel model, which is implicit in nature [2]. In
this paper, we propose a physically based closed form quantum
linear threshold voltage model, which is applicable for ultrathin
and ultrashort channel quad gate devices and does not contain
any unphysical fitting parameter. The 3-D Poisson equation and
2-D Schrödinger equation (with square potential well approx-
imation) are solved in the weak inversion region to obtain the
threshold voltage model. It is shown that electron distribution
in energy subbands in the quad gate MOSFET is quite different
from the bulk and double gate MOSFET. The proposed models
are validated against the numerical device simulator Atlas [3]
for different device architecture. The effect of effective mass
and geometry variation on the threshold voltage is also studied
using the proposed model.
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Fig. 1. (a) Schematic of quad gate transistor. (b) Band diagram perpendicular
to the gate.

II. MODEL DEVELOPMENT

A. Potential Modeling

In ultrathin devices, the quantization of electron energy due to
structural confinement becomes significant. Hence, the Poisson–
Schrödinger equations has to be consistently solved to obtain
potential distribution and inversion charge density. However,
in the weak inversion regime, one can approximate the Pois-
son equation as the Laplace equation by ignoring the inversion
charge density, and hence, decouple the two equations. In the
development of threshold voltage models, we have also taken
the parabolic band approximation. We have used mid gap metals
for the gates. Fig. 1 shows the schematic diagram of an undoped
(or lightly doped) quad gate MOSFET. The same voltage is
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applied to all the four gates. In both the insulator and silicon
region, the Poisson (Laplace) equation becomes

δ2Φ
δx2 +

δ2Φ
δy2 +

δ2Φ
δz2 = 0 (1)

with the boundary conditions

Φ(x,−H/2 − Tox , z) = Vg (2)

Φ(−W/2 − Tox , y, z) = Vg (3)

δφ

δx
|x=0 = 0 (4)

δφ

δy
|y=0 = 0 (5)

Φ(x, y, 0) = Vbi (6)

Φ(x, y, L) = Vbi + Vds � Vbi for low Vds . (7)

Here, Φ is the potential, Vbi is the built-in potential of a
n+ − i diode, Vg is the gate potential and Vds is the drain to
source voltage, H and W are the height and width of the sili-
con film, Tox is the gate oxide thickness, and L is the channel
length, respectively. 3-D numerical simulation results show that
in the insulator region the potential can be approximated as a
linear function. We further neglect the corner effects. The poten-
tial inside the insulator region can then be expressed by linear
interpolation as

Φ(x, y, 0) =
Vg − Vbi

Tox

(
x − W

2

)
+ Vbi

for
W

2
< x <

W

2
+ Tox and 0 < y <

H

2
(8)

Φ(x, y, 0) =
Vg − Vbi

Tox

(
y − H

2

)
+ Vbi

for 0 < x <
W

2
and

H

2
< y <

H

2
+ Tox . (9)

Using superposition, the potential can be written as

Φ(x, y, z) = υ(x, y) + uL (x, y, z) + uR (x, y, z). (10)

Here, υ(x, y) is the long channel potential, which satisfy the
boundary conditions (2) and (3). υ(x, y) should also satisfy the
dielectric boundary conditions, namely ε(δυ/δx) and υ(x, y)
are continuous at x = W/2, and ε(δυ/δy) and υ(x, y) are con-
tinuous at y = H/2. For quad gate MOSFET, where all the gates
have same voltage, we have υ(x, y) = Vg . Potentials uL (x, y, z)
and uR (x, y, z) capture SCE and satisfies the boundary condi-
tions (6) and (7). Potentials uL (x, y, z) and uR (x, y, z) can be
written as

uL =
∑

n

∑
m

aTnm sin
(

λn

(
x − W

2
− Tox

))
cos (μm y)

× sinh (σnm(L − z))
sinh (σnmL)

for
W

2
<x<

W

2
+ Tox

and 0<y<
H

2
(11)

uL =
∑

n

∑
m

abnm cos (λnx) sin
(

μm

(
y − H

2
− Tox

))

× sinh (σnm(L − z))
sinh (σnmL)

for 0 < x <
W

2

and
H

2
<y<

H

2
+Tox (12)

uL =
∑

n

∑
m

anm cos (λnx) cos (μm y)

× sinh (σnm(L − z))
sinh (σnmL)

for 0 < x <
W

2

and 0 < y <
H

2
(13)

uR =
∑

n

∑
m

bTnm sin
(

λn

(
x − W

2
− Tox

))
cos (μm y)

× sinh (σnmz)
sinh (σnmL)

for
W

2
< x <

W

2
+ Tox

and 0 < y <
H

2
(14)

uR =
∑

n

∑
m

bbnm cos (λnx) sin
(

μm

(
y − H

2
− Tox

))

× sinh (σnmz)
sinh (σnmL)

for 0 < x <
W

2

and
H

2
< y <

H

2
+ Tox (15)

uR =
∑

n

∑
m

bnm cos (λnx) cos (μm y)

× sinh (σnmz)
sinh (σnmL)

for 0 < x <
W

2

and 0 < y <
H

2
. (16)

Here, aTnm , abnm , anm , bTnm , bbnm , and bnm are the con-
stants to be obtained from the boundary conditions (2) and (3).
σnm is given by the following expression:

σnm =
√

λ2
n + μ2

m . (17)

The Poisson equation requires Φ and ε(δΦ/δx) be continuous
in the x-direction, and Φ and ε(δΦ/δy) be continuous in the
y-direction. The dielectric boundary conditions at the two
silicon–insulator interfaces requires uL and ε(δuL/δx) be con-
tinuous at x = W/2, and uL and ε(δuL/δy) be continuous
at y = H/2. Applying continuity in (11) and (13) along x-
direction we get

− aTnm sin (λnTox) = anm cos
(

λnW

2

)
(18)

aTnm εoxλn cos (λnTox) = −anm εsiλn sin
(

λnW

2

)
. (19)
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Taking the ratio of the above two equations, we get λn from
the following equation:

εsi tan (λnTox) − εox cot
(

λnT

2

)
= 0. (20)

Similarly, applying continuity in (12) and (13) along
y-direction and taking their ratio, we get a equation for μm

as

εsi tan (μm Tox) − εox cot
(

μm H

2

)
= 0. (21)

Note that λn and μm depends only on the device parameters.
Now uL can be rewritten as snmULnm , where

uLnm = αnm sin
(

λn

(
x − W

2
− Tox

))
cos (μm y)

× sinh (σnm(L − z))
sinh (σnmL)

for
W

2
<x<

W

2
+ Tox

and 0<y<
H

2
(22)

uLnm = βnm cos (λnx) sin
(

μm

(
y − H

2
− Tox

))

× sinh (σnm(L − z))
sinh (σnmL)

for 0 < x <
W

2

and
H

2
< y <

H

2
+ Tox (23)

uLnm = γnm cos (λnx) cos (μm y)
sinh (σnm(L − z))

sinh (σnmL)

for 0 < x <
W

2
and 0 < y <

H

2
. (24)

Eigen functions uLnm as defined by (22)–(24) are not orthog-
onal to each other. In order to evaluate the coefficient snm , we
need to construct a corresponding conjugate function set gn . It
turns out that gnm can be made from the same set of functions
as in (22)–(24) by choosing different multipliers in different
regions and constants αnm , βnm , and γnm appropriately. The
conjugate function set gnm is found as

gnm =
εox

2εsi

sin (λn (x − W/2 − Tox)) cos (μm y)
sin (λnTox) cos ((μm H)/2)

for
W

2
< x <

W

2
+ Tox and 0 < y <

H

2
(25)

gnm =
εox

2εsi

cos (λnx) sin (μm (y − H/2 − Tox))
cos ((λnW )/2) sin (μm Tox)

for 0 < x <
W

2
and

H

2
< y <

H

2
+ Tox (26)

gnm = − cos (λnx) cos (μm y)
cos ((λnW )/2) cos ((μm H)/2)

for 0 < x <
W

2

and 0 < y <
H

2
. (27)

The constants αnm , βnm , and γnm are given as

αnm = cos
(

λnW

2

)
sin (μm Tox) (28)

βnm = cos
(

μm H

2

)
sin (λnTox) (29)

γnm = − sin (λnTox) sin (μm Tox) . (30)

Similarly, uR can be written as tnmuRnm , where uRnm is
given as

uRnm = αnm sin
(

λn

(
x − W

2
− Tox

))
cos (μm y)

× sinh (σnmz)
sinh (σnmL)

for
W

2
<x<

W

2
+ Tox

and 0<y<
H

2
(31)

uRnm = βnm cos (λnx) sin
(

μm

(
y − H

2
− Tox

))

× sinh (σnmz)
sinh (σnmL)

for 0 < x<
W

2

and
H

2
<y<

H

2
+ Tox (32)

uRnm = γnm cos (λnx) cos (μm y)
sinh (σnmz)
sinh (σnmL)

for 0 < x<
W

2
and 0<y<

H

2
(33)

uLnm at x = W/2 and y = H/2 from (22) is given as

uLnm = −αnm sin (λnTox) cos
(

μm
H

2

)

= − sin (μm Tox) sin (λnTox) cos
(

μm
H

2

)
cos

(
λn

W

2

)
(34)

uLnm at x = W/2 and y = H/2 from (23) is given as

uLnm = −βnm sin (μm Tox) cos
(

λn
W

2

)

= − sin (μm Tox) sin (λnTox) cos
(

μm
H

2

)
cos

(
λn

W

2

)

(35)

uLnm at x = W/2 and y = H/2 from (24) is given as

uLnm = −γnm cos
(

μm
H

2

)
cos

(
λn

W

2

)

= −sin (μm Tox) sin (λnTox) cos
(

μm
H

2

)
cos

(
λn

W

2

)
.

(36)

Since, potential is given by
∑

n

∑
m ssnmuLnm and from

(34)–(36), it is seen that uLnm gives the same value at the
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corner, potential is continuous at the corner. By multiplying
(22)–(24) with the corresponding conjugate functions (25)–(27)
and integrating, the coefficients snm can be obtained as

snm=

∫ H +Tox

0

∫ W +Tox

0 (Φ(x, y, 0) − υ(x, y)) gnm(x, y) dxdy∫ H +Tox

0

∫ W +Tox

0 uLnm(x, y, 0)gnm(x, y) dxdy

= (Vg − Vbi)
Ωnm

ζnm
. (37)

Similarly, tnm can be obtained as

tnm=

∫ H +Tox

0

∫ W +Tox

0 (Φ(x, y, L) − υ(x, y)) gnm(x, y) dxdy∫ H +Tox

0

∫ W +Tox

0 uRnm(x, y, L)gnm(x, y) dxdy

= (Vg − Vbi − Vds)
Ωnm

ζnm
(38)

where Ωnm and ζnm are given by the following equations:

Ωnm =
εoxμm tan ((μm H)/2) + εoxλn tan ((λnW )/2)

2εsiToxμ2
m λ2

n

− 2
μm λn

tan
(

μm H

2

)
tan

(
λnW

2

)
(39)

ζnm =
sin(μm Tox)

16 cos ((μm H)/2)

(
H +

sin(μm H)
μm

)

×
(

εoxTox cos ((λnW )/2)
εsi sin(λnTox)

+
W sin(λnTox)

2 cos ((λnW )/2)

)

+
sin(λnTox)

16 cos ((λnW )/2)

(
W +

sin(λnW )

λn

)

×
(

εoxTox cos ((μm H)/2)
εsi sin(μm Tox)

+
H sin(μm Tox)

2 cos ((μm H)/2)

)
.

(40)

Using (10) potential in the silicon region can be written as

Φ(x, y, z) = Vg + (Vg − Vbi)
∑

n

∑
m

cnm sinh(σnm(L − z))

+ (Vg − Vbi − Vds)
∑

n

∑
m

sinh(σnmz) (41)

where cnm is given by

cnm(x, y) = −Ωnmγnm

ζnm

cos(λnx) cos(μm y)
sinh(σnmL)

(42)

B. Classical Threshold Voltage Modeling

Threshold voltage for undoped body devices is defined as the
gate voltage when the integrated charge at the virtual cathode
becomes equal to the critical charge (QT ). It is found from the
numerical simulation that only the first series term in (41) is
sufficient to predict the potential at virtual cathode, and hence,

in the further analysis only the first term is used. Classical inte-
grated charge is obtained from (41) as

Q =
∫ H/2

−H/2

∫ W/2

−W/2
qnie

(
Φ

U T

)
dxdy. (43)

Now, as Φ is a very complicated function of x and y, the
above integration cannot be evaluated analytically. Therefore,
the above integration can be approximated as:

Q ≈ WHqnie

(
Φ ( ( 3 W / 1 4 ) , ( 3 H / 1 4 , y ) , z c )

U T

)
. (44)

Here, UT is the thermal voltage, ni is the intrinsic carrier
concentration, zc is the virtual cathode position, which is L/2
for low Vds , and q is the elementary charge. Using (44) and (41),
the classical threshold voltage model is obtained as shown in
(45) at the bottom of the page.

C. Quantum Threshold Voltage Modeling

The potential distribution obtained in (41) is quasi-parabolic
in nature in x- and y-direction [see Fig. 1(b)]. Hence, it is very
difficult to solve Schrödinger equation with the potential ex-
pression given in (41). Therefore, in this paper, we approximate
the actual potential well as the square potential well as shown
by the checked lines in Fig. 1. In this square potential well, the
bottom represents the minima of conduction band energy (Eco)
at the body center position (x = 0, y = 0, and z = zc), and
can be given as

Eco =
Eg

2
− qΦ(0, 0, zc). (46)

Using the above value of potential energy (46), the
Schrödinger equation becomes

h̄2

2mx

δ2Ψ
δx2 +

h̄2

2my

δ2Ψ
δy2 + (E − Eco)Ψ = 0. (47)

Equation (47) can be solved by standard variable separable
technique [5] and its solution (Ψ) and (E) is given as

Ψix iy
(x, y) =

√(
4

HW

)
sin

(
ixπ(x − (lx/2))

lx

)

× sin
(

iy πy − (ly /2)
ly

)
(48)

Eix iy
= Eco +

h̄2π2

2

[
1

mx

(
ix
lx

)2

+
1

my

(
iy
ly

)2
]

. (49)

Here, h̄ = h/(2π), h is the planks constant, Ψ is the wave
function, and E is the energy of the electron wave. In silicon,
there are six ellipsoidal valleys with mt and ml as the transverse
and longitudinal effective masses, and ix and iy are the positive
natural numbers. In (48) and (49), the masses (mx and my ) and
the lengths lx and ly take different values depending on the di-
rection of quantization. For example, if masses and dimensions

VTC =
UT ln (QT /WHqni) + 2Vbic11 ((3W/14), (3H/14)) sinh(σ11L/2)

1 + 2c11 ((3W/14), (3H/14)) sinh(σ11L/2)
(45)
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of the film are ml and mt , and W and H along the quantization
direction, then in (48) and (49), mx and my will assume the
mass of mt and ml , and lx and ly will assume the lengths as
W and H , respectively. The energy reaches a minimum for a
maximum mass (49). For silicon with six energy valleys, we
have thus two lower energy valleys, two middle energy valleys,
and two higher energy valleys, respectively. In a special case of
equal height and width of the film, the two lower energy val-
leys and two middle energy valleys merge producing four lower
energy valleys and two higher energy valleys. Thus, the charge
per unit length per valley is given by

Q =
∑
ix

∑
iy

q

∫ ∞

Ei x i y

N1−Df(E)d(E). (50)

Using N1−D as the 1-D density of states and f(E) as the
Fermi-dirac function (50) leads to

Q = q
∑
ix

∑
iy

√(
mz

2πh̄2

)∫ ∞

Ei x i y

(E − Eix iy
)−1/2

1+ exp ((E − EF )/kT )
dE.

(51)
Here, mz is the mass of that valley, which is perpendicular to the
direction of quantization. The charge (51) is difficult to solve.
However, in the weak inversion regime the Fermi level is found
to be much below the conduction band energy. Hence, using
Bolzmann statistics the integrated charge could be approximated
as

Q = q

√(
mz

2πh̄2

)∑
ix

∑
iy

∫ ∞

Ei x i y

exp ((EF − E)/kT )√
(E − Eix iy

)
dE

= q
∑
ix

∑
iy

√
mzkT

2h̄2 exp
(

EF − Eix iy

kT

)
. (52)

Using (49) and (52), the total integrated charge at virtual
cathode (z = L/2) is given by

Q =
∑
ix

∑
iy

q

√
2kTmt

h̄2 exp
(
−Eco + κ(ix , iy )

kT

)

+
∑
ix

∑
iy

q

√
2kTmt

h̄2 exp
(
−Eco + 
(ix , iy )

kT

)

+
∑
ix

∑
iy

q

√
2kTmt

h̄2 exp
(
−Eco + ω(ix , iy )

kT

)
(53)

where

κ(ix , iy ) =
h̄2π2

2

[
1

ml

(
ix
W

)2

+
1

mt

(
iy
H

)2
]

(54)


(ix , iy ) =
h̄2π2

2

[
1

mt

(
ix
W

)2

+
1

ml

(
iy
H

)2
]

(55)

ω(ix , iy ) =
h̄2π2

2

[
1

mt

(
ix
W

)2

+
1

mt

(
iy
H

)2
]

. (56)

However, it is seen from simulation that only one energy level
is sufficient to predict the charge accurately. Hence, only one
energy level is used in the further anaylsis.

Using (46) and (53) and the same definition of QT , the quan-
tum threshold voltage model becomes

VTQ

=
(Eg/2q)+(kT/q)ln ((QT /ρ))+2Vbic11 (0, 0) sinh(σ11L/2)

1+2c11 (0, 0) sinh(σ11L/2)

(57)

where ρ is given by

ρ = q

√
2kTmt

h̄2

(
exp

(
−κ(1, 1)

kT

)
+ exp

(
−
(1, 1)

kT

))

+ q

√
2kTml

h̄2 exp
(
−ω(1, 1)

kT

)
. (58)

The increase in the threshold voltage due to quantum effects
is obtained from (45) and (57) and is given by

ΔVT = VTQ − VTC (59)

III. RESULTS AND DISCUSSION

Fig. 2 shows the constant electrostatic potential contours of
a quad gate transistor. We have used only one series term (n =
1 and m = 1) and 25 series terms (n = 5 and m = 5) in (10)
for obtaining Fig. 2(a) and (b), respectively. It is seen from the
plot that only one series term is sufficient to predict the potential
at virtual cathode but one needs several terms to predict the
potential close to source and drain region. Thus, the assumption
of linear potential variation at the insulator boundaries is valid.
It is also observed that although we neglect the insulator corners,
the potential is continuous at the corners. Fig. 3 shows the
quantum charge distribution plot at virtual cathode position at
gate voltage 0.3 V. Color represents the model and the line
represents the 3-D Atlas simulation results. Fig. 4 represents the
variation of total quantum integrated charge with gate voltage.
It is seen from the figure that the quantum threshold voltage
increase with decrease in film thickness. This is due to increase
in energy quantization with decrease in film thickness. Equation
(53) is used to obtain the integrated charge with only one energy
level and one series term.

Fig. 5 shows the variation of the quantum threshold voltage
with width and height of the film at channel length of 20 nm.
Fig. 6 shows the variation of quantum and classical threshold
voltage with film height for different channel lengths at film
width of 9 nm. The vertical spacing between the lines in Fig. 6
gives the SCE. It is observed that the SCE decreases slightly
with energy quantization. This is due to increase in the effective
band gap of silicon because of quantum effects [8]. The effect
of confinement (ΔVT ), as obtained from (59) is shown in Fig. 7
as a function of device dimensions.

In literatures, no standard value is found for the threshold
charge (QT ). Some authors [7] have equated it with the thermal
charge. However, we have found from the numerical simulation
that the threshold voltage obtained by using the thermal charge



126 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 1, JANUARY 2011

Fig. 2. Constant electrostatic potential contours based on the analytical so-
lution (solid curves) for quad gate transistor compared with 3-D simulation
results from Atlas (dashed lines). Here, L = 20 nm, H = 9 nm, W = 9 nm,
and Vg = 0.3 V. (a) X − Y plane at the virtual cathode (zc = L/2). (b) Y − Z
plane at X = 0.

Fig. 3. Charge distribution plot at virtual cathode for QG at Vg = 0.3 V. Here,
H = 9 nm, W = 9 nm, and L = 20 nm. Symbols represent Atlas simulation
and lines represent the model.

Fig. 4. Variation of quantum integrated charge at virtual cathode with gate
voltage for different film width for H = 9 nm and L = 20 nm. Symbols and
lines represent the Atlas simulation and model respectively.

Fig. 5. Variation of quantum threshold voltage with film height and width for
channel length (L = 20 nm). Symbols and lines represents the Atlas simulation
and model, respectively.

Fig. 6. Variation of threshold voltage with film height for different channel
lengths for W = 9 nm. Line and circle symbol represents the quantum thresh-
old voltage model and the quantum Atlas simulation. Dashed line and triangle
symbol represents the classical threshold voltage model and the Atlas simula-
tion.

sometimes (depending on the device geometry) lies in the strong
inversion regime, and thus, overpredict the threshold voltage. In
this paper, we first extract the threshold voltage from classi-
cal simulation of Id − Vg characteristics by linear interpolation
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Fig. 7. Variation of ΔVT with channel length for variuos widths (H = 9 nm).

Fig. 8. Variation of dVTQ /dH with film height for different channel lengths.
Line and Symbols indicates the variation at W = 8 nm and W = 9 nm.

Fig. 9. Variation of dVTQ /dL with channel lengths for different film widths
at H = 9 nm.

method for wide range of device architectures. Corresponding
to the extracted threshold voltage, integrated charge at virtual
cathode is computed for each device and an average charge is
taken as the threshold charge, which is 5 × 1024 qWHcm−1 .

Figs. 8 and 9 show the variation of first derivative of quan-
tum threshold voltage with film height and length, respectively.
A quad gate transistor is symmetric about width and height.
Hence, the derivative of quantum threshold voltage with respect
to channel width also remains almost same as Fig. 8. These fig-
ures are obtained by numerically computing the derivatives of
quantum threshold voltage obtained from the proposed model.
It is seen from the Fig. 8 that the variation is high at lower film

Fig. 10. Variation of threshold voltage with film width for different channel
lengths at H = W . Line and dashed line represents the quantum threshold
voltage with bulk effective mass and modified effective mass m∗.

height compared to higher values, which is due to the quantum
confinement effect. The effect of variation of device geometries
on the quantum threshold voltage could be obtained by using
the chain rule as follows:

ΔVTQ

VTQ
=

W

VTQ

δVTQ

δW

ΔW

W
+

H

VTQ

δVTQ

δH

ΔH

H

+
L

VTQ

δVTQ

δL

ΔL

L
. (60)

Now, for example, if there is 5% increase in width of the
transistor due to process variation for the geometry W = 9 nm,
H = 8 nm, and L = 20 nm, using the derivative values from
Figs. 8 and 9, we get the following value for ΔVTQ as:

ΔVTQ

VTQ
= −0.0048

ΔW

W
− 0.0032

ΔH

H
+ 0.002316

ΔL

L
.

(61)
If we assume zero variation in channel length, the variation

in threshold voltage can be made zero if film height decreases
by an amount of 7.5%. In this way in a quad gate MOSFET, the
effect of variation in one dimension could be compensated by
properly tuning the other dimension.

So far in the discussion, we assumed the value of the effective
masses to be equal to the value of bulk silicon effective masses.
However, the values of effective masses changes with the device
dimensions. For a cylindrical body silicon nanowire transistor,
having a diameter d, the effective mass could be formulated as
a function of d by following equation [9]:

m∗
l,t(d) = m∗

l,t(∞)
(

1 +
al,t

d
+

bl,t

d2

)
(62)

where al,t and bl,t are the fitting parameters having the values
al = 0, at = 0.68, bl = 0.28, and bt = 0.87. m∗

l,t(∞) denotes
the effective mass in bulk silicon. In this paper, we approximated
the value of equivalent nanowire diameter to be equal to (W +
H)/2. In Fig. 10 the lines shows the variation of threshold
voltage if we use the constant bulk effective mass and dashed
lines shows the variation of threshold voltage if we use effective
mass obtained from (62). It is seen from the figure that the
threshold voltage is low when we consider the effective mass
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dependence on device geometry rather than assuming it to be a
constant.

IV. CONCLUSION

A physically based analytical linear quantum threshold volt-
age model for a quad gate has been developed and verified as
against professional numerical simulator. The proposed model,
which is based on the solution of the Poisson and Schrödinger
equations does not use any fitting parameters and is capable
of predicting the threshold voltage for ultrashort channel and
ultrathin body devices.
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