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Abstract—Charge linearization techniques have been used over
the years in advanced compact models for bulk and double-gate
MOSFETs in order to approximate the position along the channel
as a quadratic function of the surface potential (or inversion
charge densities) so that the terminal charges can be expressed as
a compact closed-form function of source and drain end surface
potentials (or inversion charge densities). In this paper, in case of
the independent double-gate MOSFETs, we show that the same
technique could be used to model the terminal charges quite
accurately only when the 1-D Poisson solution along the channel
is fully hyperbolic in nature or the effective gate voltages are
same. However, for other bias conditions, it leads to significant
error in terminal charge computation. We further demonstrate
that the amount of nonlinearity that prevails between the surface
potentials along the channel actually dictates if the conventional
charge linearization technique could be applied for a particular
bias condition or not. Taking into account this nonlinearity, we
propose a compact charge model, which is based on a novel piece-
wise linearization technique and shows excellent agreement with
numerical and Technology Computer-Aided Design (TCAD) sim-
ulations for all bias conditions and also preserves the source/drain
symmetry which is essential for Radio Frequency (RF) circuit de-
sign. The model is implemented in a professional circuit simulator
through Verilog-A, and simulation examples for different circuits
verify good model convergence.

Index Terms—Circuit simulation, compact modeling, double-
gate MOSFET, terminal charge.

I. INTRODUCTION

THE independent double-gate (IDG) MOSFET has at-
tracted much attention due to its ability to modulate the

threshold voltage and transconductance dynamically that leads
to novel circuit applications, as demonstrated in the literatures
[1]–[4]. An accurate compact model of the terminal charges
applicable for all bias conditions for such devices are needed
to conduct transient and small-signal analysis in a circuit simu-
lator. As the terminal charge integrals cannot be directly solved,
different charge linearization techniques are developed over the
years (first for bulk [5], [6] and then for DG [7]–[9] MOSFETs)
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to approximate the position along the channel as a quadratic
function of the surface potential (or inversion charge densities)
so that the terminal charges can be expressed as a compact
closed-form function of source and drain end surface potentials
(or inversion charge densities). In this paper, we show that for
IDG MOSFETs, the same technique cannot be used for all bias
conditions. Analyzing the nonlinearity between two surface
potentials, we demonstrate that the existing model [9] predicts
the transcapacitance values accurately when the nonlinearity
between two surface potentials is small (which happens when
the potential solution throughout the channel is hyperbolic in
nature or the effective gate voltages are equal); however, there
is a significant inaccuracy in prediction when the nonlinearity
is large (which happens when the potential solution throughout
the channel is fully or partially trigonometric in nature). We
then propose a compact charge model that takes into account
this nonlinearity through a novel piecewise linearization tech-
nique. The proposed model, which shows excellent agreement
with numerical and TCAD simulations in all bias conditions,
is successfully implemented in a professional circuit simulator
through Verilog-A interface and also preserves the source/drain
symmetry which is essential for RF circuit design.

II. MODEL DEVELOPMENT

A. Limitations of Existing Models

Let us consider an IDG MOSFET having gate oxide thick-
nesses of tox1(2), a silicon body thickness of tsi, a channel
length of L, and a channel width of W . The “exact” drain
current equation for the device could be written as [10]

Ids = μ
W

L
[F (Qi1s, Qi2s, Gs) − F (Qi1d, Qi2d, Gd)] (1)

where

F (Qi1, Qi2, G)=
Q2

i1

2Cox1
+

Q2
i2

2Cox2
+

2
β

(Qi1+Qi2)+
1
2
εsitsiG.

(2)
Here, Qi1 and Qi2 are the inversion charge densities of the first
and second gates given by

Qi1(2) = Cox1(2) (Vg1(2) − ψ1(2)) (3)

and G, the coupling factor is expressed as [11]

G =
Q2

i1

ε2si
− Beβ(ψ1−V ) =

Q2
i2

ε2si
− Beβ(ψ2−V ). (4)

Here, Cox1(2) are the oxide capacitance per unit area of
first(second) gate defined as εox/tox1(2), Csi is the silicon body
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capacitance per unit area defined as εsi/tsi, εsi and εox are the
permittivities of Si and SiO2 respectively, q is the elementary
charge, β is the inverse thermal voltage, ni is the intrinsic
carrier density, B = 2qni/βεsi, ψ1(2) are the Si/SiO2 surface
potentials at first(second) gate, V is the electron quasi-Fermi
potential (channel potential), Vg1(2) is the effective gate voltage
(i.e., Vg1(2) = Vgapplied − δφ1(2), where Vgapplied is the voltage
applied at the gate terminal, and δφ1(2) is the work-function
difference between the gate material and silicon), and μ is
the effective mobility. In all the discussion that follows, any
variable with subscript “s” refers to its values at source end, and
any variable with subscript “d” refers to its value at drain end.
We also use the following terminologies to define the “state” of
the channel:

HH: nature of the P-IVE1 is hyperbolic at both source and drain
ends.

TT: nature of the P-IVE is trigonometric at both source and
drain ends.

TH: nature of the P-IVE is trigonometric at the source end but
hyperbolic at the drain end.

Now, the position y along the channel (y = 0 describes the
source end, and y = L denotes the drain end) can be related to
the inversion charge densities (Qi1 and Qi2) at that point by the
following relationship [12]:

y

L
=

Fs − F

Fs − Fd
(5)

where Fs = F (Qi1s, Qi2s, Gs) and Fd = F (Qi1d, Qi2d,
Gd). According to the Ward–Dutton charge partition theory
[13], terminal charges could be given as

QG1 = W

L∫
0

Qi1(y)dy (6)

QG2 = W

L∫
0

Qi2(y)dy (7)

QD = − W

L∫
0

y

L
Qi(y)dy (8)

QS = − (QG1 + QG2 + QD) (9)

where Qi represents the total inversion charge
density (= Qi1 + Qi2). As the exact integration of (6)–(9)
are not available, several charge linearization techniques
[5]–[9] have been proposed so that y (or F ) in (5) could be
approximated as a quadratic function of ψ1(2) (or Qi1(2)),
which results in a closed-form expression of terminal charges.

However, from (2), one can see that, irrespective of the lin-
earization technique, in order to approximate F as a quadratic
function of either ψ1 or ψ2, for a given bias condition, ψ1 has to

1In this paper, the surface potential equations proposed in [11] are called
primary input voltage equations (P-IVE). Another set of implicit equations will
be introduced in the next section, which will be called secondary input voltage
equations (S-IVE).

linearly change with ψ2 along the channel. Those two surface
potentials hold a linear relationship only for the following two
bias conditions.

1) When the channel is HH in nature: In this case, potential
distribution is monotonous in the direction perpendicular
to the channel, and one surface is always in weak inver-
sion.

2) When the effective gate voltages are equal (i.e., common
gate device having the same gate work function but could
have difference in oxide thickness) [14]. It is a special
case under TT state.

In other cases (i.e., TH or TT), there would be certain
amount of nonlinearity factor (NLF ) between ψ1 and ψ2, and
depending on the value of NLF , a quadratic approximation of
F as a function of ψ1 or ψ2 might lead to significant error in
terminal charge calculation.

From Fig. 1(a), one can see that there is disagreement be-
tween y versus ψ1 relationship predicted by the model [9] and
the numerical simulation when the relationship between ψ1 and
ψ2 is nonlinear. This results in significant disagreement in tran-
scapacitance values when the NLF is high, as demonstrated
in Fig. 1(b) and (c). At the same time, the model shows good
agreement with numerical data for small values of NLF . It
is also shown that NLF is much higher in TH and TT mode
in comparison to the HH mode. Here, NLF is calculated as
[14], [15]

NLF =

√∫ ψ1d

ψ1s
[ψ2 − ψ̃2]2dψ1

ψ1d − ψ1s
(10)

where ψ̃2 is the linear approximation of the exact ψ2. It
should be also noted that the (1/2)εsitsiG term in (1) does
not contribute much in total drain current. Therefore, the exact
nature of relationship between G and ψ1(2) does not have any
significant impact on terminal charge calculation. In passing,
we also like to mention that the effect of NLF on the model
is not equally visible to all transcapacitance values. It has a
very strong impact on Cg1g2 (or Cg2g1) and Cgkd (where k = 1
if Vg1 < Vg2 else k = 2) characteristics and lesser impact on
other transcapacitance values. It is also found that the value of
NLF and its impact on the existing model [9] increases with
the bias.

B. Proposed Charge Model

In order to apply the conventional charge linearization tech-
nique for all bias conditions, we propose “piecewise lineariza-
tion” technique, where we divide channel into segments in such
a way that ψ1 and ψ2 hold a quasi-linear relationship in each
segment. The expressions for the partial terminal charges, i.e.,
terminal charges computed only for the pth segment, can be
obtained by modifying the expressions in [14] as

Qp
Gk

=
[
Qplo

Gk
+ Qphi

Gk

]
(k = 1 or 2) (11)

Qp
D =

[
Lp

L
(Qplo

D + Qphi
D ) − yp

L

(
2∑

k=1

Qp
Gk

)]
(12)
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Fig. 1. (a) Left axis depicts the variation of ψ2 with ψ1 along the channel. At
each ψ1, right axis shows the y/L predicted by [9] (solid line) and the exact
value obtained from numerical simulation (symbol). (b) Left axis compares the
transcapacitance Cg2g1 characteristics predicted by [9] (solid lines) with the
exact values obtained from numerical simulation (symbol) for two different
Vg2 biases. Right axis depicts their respective NLF (dotted lines). (c) Left
axis compares the transcapacitance Cg2d characteristics predicted by [9] (solid
lines) with the exact values obtained from numerical simulation (symbol) for
two different biases. Right axis depicts the NLF (dotted lines) for each of these
cases. In the figure, the “state” of the channel at any bias point is depicted by
varying the symbol used for numerical simulation: circle represents HH, square
represents TH, and triangle represents TT. TCAD simulation data (crosses) are
shown for few cases to preserve the clarity. Device used has tox1 = 1.5 nm,
tox2 = 1 nm, and tsi = 10 nm.

where

Qplo
Gk

=WLp

[
Qikyp + Qikyp+1

2

]
(13)

Qplo
D = − WLp

2∑
k=1

[
Qikyp

6
+

Qikyp+1

3

]
(14)

Qphi
Gk

=WLp

[
νp

k(Qikyp − Qikyp+1)2

6 (νp
k(Qikyp + Qikyp+1) + λp

k)

]
(15)

Qphi
D = − WLp

2∑
k=1

[
νp

k(Qikyp − Qikyp+1)2

×
(
5λp

k + 6νp
kQikyp + 4νp

kQikyp+1

)
60

(
νp

k

(
Qikyp + Qikyp+1

)
+ λp

k

)2

]
.

(16)

The segment length (Lp) is given as Lp = yp+1 − yp, where
yp and yp+1 are the left- and right-hand y-coordinates of the
segment (for example, for a channel with n segments y1 = 0
at the source end and yn+1 = L at the drain end). In the
above expressions, Qikyp and Qikyp+1 are the inversion charge
densities at the left and right ends of the segment and can be
given as

Qikyp = Coxk (Vgk − ψk(yp)) (17)
Qikyp+1 = Coxk

(
Vgk − ψk(yp+1)

)
(18)

νp
1 =

1
2

[
1

Cox1
+

(mp
1)

2

Cox2

]
(19)

νp
2 =

1
2

[
(mp

2)
2

Cox1
+

1
Cox2

]
(20)

λp
1 =

Ids

μW
L (Qi1yp − Qi1yp+1)

− νp
1 (Qi1yp + Qi1yp+1)

(21)

λp
2 =

Ids

μW
L (Qi2yp − Qi2yp+1)

− νp
2 (Qi2yp + Qi2yp+1)

(22)

where mp
1 = (Qi2yp − Qi2yp+1)/(Qi1yp − Qi1yp+1) and

mp
2 = 1/mp

1. The total terminal charges can be obtained by
simply adding up the respective terminal charges for each
segment. There are three things to take note of as follows.

1) Each charge is divided into two components: Qplo , which
denotes the low Vds component, and Qphi , which denotes
the high Vds component. Qphi becomes insignificant in
comparison to Qplo when Vds is very low. As the for-
mulation of Qplo is source drain symmetric (can be also
obtained by assuming the linear distribution of ψ1(2) with
respect to y), the proposed model is symmetric around
Vds = 0 [14].

2) When there is no segment (i.e., n = 0), yp in (12)
becomes zero, and (11)–(16) becomes mathematically
equivalent to the charge model proposed earlier [14].

3) The piecewise linearization technique might be applica-
ble to other models [9]. However, the proposed model is
“derivative free” and thus appears to be more numerically
robust than the other model (that involves parameter
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such as α′ = dθ/dα [9], which is derived from the IVE.
As the IVE has discontinuity/singularity, it is difficult
to maintain the continuity of the derivative particularly
around the G = 0 point).

In the proposed charge model, we basically divide a single
MOSFET into several MOSFETs so that conventional charge
linearization technique can be extended in the presence of
nonlinearity between the surface potentials. As the terminal
charges can be obtained by arithmetic operations on surface
potentials and terminal voltages, it could be extended to small
geometry devices by a bulk transistor modeling approach [8].
It should be also noted that the segmentation concept, which
was earlier used in [16], is semiempirical in nature and not
“derivative free.”

C. Selection of Break Points and Secondary IVE

The proposed charge model requires the surface potential
values at the break points. This is the main departure from
the compact models for a bulk or symmetric DG MOSFET, as
there, the charge model is the function of source and drain end
surface potentials and does not depend on the surface potential
at any point in between the source and the drain. As the drain
current is a function of ψ1, ψ2, and G, one can segment the
channel on ψ1 scale or on ψ2 scale or on G scale. If we segment
the channel on ψ1 scale, at a breakpoint, we need to know the
value of ψ2 and G for a given value of ψ1 and the gate voltages.
This is difficult as the P-IVEs [11] were expressed in terms of
ψ1 only when Vg1 > Vg2. The same argument is applicable if
we segment the channel on ψ2 scale. However, the exercise of
finding the value of the surface potentials at the break points
could be made much easier if we segment the channel on G
scale. For a given value of G and gate voltages, the P-IVEs get
simplified to the following implicit equations (which we call
S-IVE):

f̃(x) ≡ x ln(x) + ax2 + bx + c = 0 (23)

where

a =
βεsi

√
G

2Cox1 sinh
(

βtsi
√

G
2

) (24)

b =
√

G coth

(
βtsi

√
G

2

)[
1 − βεsi

2Cox1

]
− Cox2

εsi
(Vg1 − Vg2)

(25)

c = −

⎡
⎣
√

G cosh2
(

βtsi
√

G
2

)
sinh

(
βtsi

√
G

2

) ±
√

G sinh

(
βtsi

√
G

2

)⎤
⎦ (26)

x = cosh

(
βtsi

√
G

2

)
+

sinh
(

βtsi
√

G
2

)
√

G
(ξ1) (27)

where ξ1 = (Cox1/εsi)(Vg1 − ψ1). The above S-IVE is written
for hyperbolic mode (G > 0) and valid for Vg1 > Vg2. For
trigonometric mode, one needs to replace a hyperbolic operator
with a trigonometric operator and to use a negative sign in (26).
For Vg2 > Vg1 cases, Vg1 and Vg2, Cox1 and Cox2 have to be
swapped in (25), and ξ1 has to be replaced with ξ2, where ξ2 =

TABLE I
SUGGESTED POSITIONS FOR THE BREAK POINTS

(Cox2/εsi)(Vg2 − ψ2). In S-IVE, we always use the absolute
value of G. For a given value of G at any break point, a, b, and c
are constant, and we need to solve the equation f̃(x) = 0 to find
the value of ξ1(2). It is worth noting that both the trigonometric
and hyperbolic P-IVEs have discontinuity at G = 0, and the
trigonometric P-IVE has additional discontinuity at (θ1(2) = π
[11]) point. As a result of fixing G at a particular value, the
hyperbolic S-IVE is now free from any discontinuity. The
trigonometric S-IVE has now one singularity (instead of two)
at x = 0 point, which is equivalent to θ1(2) = π of P-IVE. The
solution technique of S-IVE is much simpler than that of P-IVE
[17], as discussed in the Appendix.

As the main objective of channel segmentation is to achieve
a piecewise linear relationship between ψ1 and ψ2, one can
put a large number of equally spaced break points between
Gs and Gd in order to achieve very high accuracy. However,
the computational efficiency degrades with the increase in the
number of break points. We found that, instead of placing the
break points in regular interval, if we place them in some
“selected” positions, high accuracy in terminal charges could
be obtained with very few number of points. Those “selected”
positions, which were heuristically found, are shown in Table I.
Gi (the value of G at break point “i,” which can be 1, 2, or 3 for
n = 3) is computed using the respective χi shown in Table I, as
Gi = Gs + (Gd − Gs) ∗ χi. This way, the user can select the
number of break points based on the accuracy required.

III. RESULTS AND DISCUSSION

We have validated the proposed charge model against nu-
merical simulation (obtained by solving the terminal charge
integrals numerically) and with TCAD data [18]. The modern
compact models are implemented in a circuit simulator in a
charge-based approach in order to satisfy the charge conserva-
tion. However, the charge models are conventionally verified
in terms of transcapacitance values, as any error in terminal
charge calculation is magnified due to the presence of the
derivative term in transcapacitance expressions [9]. As shown
in Fig. 2, the number of break points increase the accuracy of
the transcapacitance values in TH state, where NLF is high.
However, for HH state (low NLF case), the charge model
without any break points also provides reasonable accuracy.
In Fig. 3, we have validated our model for different devices
for different bias conditions, which demonstrates the fact that
the “selected” break points (given in Table I) are independent
of device parameters and bias values. Although there are nine
independent transcapacitance values, we validate our model
only for Cg2g1 and Cg2d, as these two transcapacitance values
get maximally affected by the NLF . We assure that an accurate
prediction of those two transcapacitance values automatically
guarantees the good accuracy of other transcapacitance values.
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Fig. 2. Comparison of the transcapacitance (a) Cg2g1 and (b) Cg2d charac-
teristics predicted by the proposed model for different number of break points
(lines) with the exact values obtained from numerical simulation. The types of
symbols and the device parameters are the same as in Fig. 1. TCAD simulation
data (crosses) are shown for few cases.

We implemented our model in a professional circuit sim-
ulator [19] through its Verilog-A interface. A 75-stage ring
oscillator, an 8-bit ripple adder, and an 8-bit Johnson counter
were successfully simulated using the proposed charge model.
Two different circuit design approaches were adopted: (1) cir-
cuits using tied-gate configuration, where the transistor always
operates in the trigonometric mode, and (2) circuits where
the second gate is deactivated (grounded or connected to the
source) so that the transistor operation is predominantly in
the hyperbolic mode. Although for tied-gate configuration, the
piecewise linearization technique is not required [14], we have
used it to compare the simulation time between trigonometric
and hyperbolic S-IVEs. Table II depicts the simulation times
observed for the mentioned circuits using different number of
break points (n = 1, 2, or 3) normalized with respect to the
case where no-break point is used. One can find from Table II
that the addition of each break points delays the simulation by
an average 17% irrespective of the trigonometric or hyperbolic
nature of S-IVE. Good convergence in all cases demonstrates
practicality of the new charge model for the large-scale circuit
simulation.

Fig. 3. Transcapacitance (a) Cg2g1 and (b) Cg2d characteristics predicted
by the proposed model for n = 3 for different devices (solid line) and the
corresponding exact values obtained from numerical simulation (symbols as
in Fig. 1) and TCAD simulation (crosses). Devices chosen are dev1: tox1 =
2 nm, tox2 = 1 nm, and tsi = 15 nm; dev2: tox1 = 2 nm, tox2 = 2 nm, and
tsi = 10 nm; dev3: tox1 = 1 nm, tox2 = 2 nm, and tsi = 15 nm; dev4: tox1 =
2 nm, tox2 = 3 nm, and tsi = 20 nm; and dev5: tox1 = 4 nm, tox2 = 1 nm,
and tsi = 10 nm. To keep the clarity of the figure, TCAD data have been put
for few cases.

TABLE II
NORMALIZED SIMULATION TIME AS FOUND IN CIRCUIT SIMULATOR

IV. CONCLUSION

We show that due to the nonlinear relationship that might
prevail between the surface potentials of an IDG MOSFET,
the position along the channel cannot be approximated as a
quadratic function of the surface potential, which is a common
practice in compact modeling of bulk and symmetric double-
gate devices. We propose a new charge model, which takes
into account this nonlinearity by a novel piecewise linearization
technique. The proposed model is successfully implemented
in a professional circuit simulator and found to be in good
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agreement with numerical results and TCAD data for all bias
conditions.

APPENDIX

Solution Techniques for S-IVEs: We solve the S-IVEs by
Halley’s method with optimized physics-based initial guesses,
which are explained below for the Vg1 > Vg2 case. When the
S-IVE is hyperbolic in nature, then ξ2 �

√
G. Assuming a lin-

ear relationship between ξ1 and ξ2 along the channel, ξ1 can be
approximated as ξ1 � [(ξ1s − ξ1d)/(ξ2s − ξ2d)]ξ2 + (ξ2sξ1d −
ξ2dξ1s)/(ξ2s − ξ2d). We use this approximate value of ξ1 as an
initial guess to solve the hyperbolic S-IVE.

When the S-IVE is trigonometric in nature, the equation
has singularity, and thus, the solution space is bounded be-
tween ξ1min and ξ1max, where ξ1max = ξ1s and ξ1min =
max[ξ1d,−

√
G cot(βtsi

√
G/2)]. (We always use an absolute

value of G in the S-IVE expression.) Now, we use (ξ1min +
ξ1max)/2 as an initial guess for the Halley’s method to solve
the S-IVE. However, in the presence of singularity, a derivative-
based root finding method (e.g., Halley) cannot assure con-
vergence. Hence, we use LZ4 [17], [20] as a backup. During
iteration in Halley’s loop, if the root goes out of the solution
space, we switch to LZ4 in order to achieve assured convergence.
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