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Abstract—In this paper, we address a closed-form analytical
solution of the Joule-heating equation for metallic single-walled
carbon nanotubes (SWCNTs). Temperature-dependent thermal
conductivity κ has been considered on the basis of second-order
three-phonon Umklapp, mass difference, and boundary scattering
phenomena. It is found that κ, in case of pure SWCNT, leads to a
low rising in the temperature profile along the via length. However,
in an impure SWCNT, κ reduces due to the presence of mass
difference scattering, which significantly elevates the temperature.
With an increase in impurity, there is a significant shift of the hot
spot location toward the higher temperature end point contact.
Our analytical model, as presented in this study, agrees well
with the numerical solution and can be treated as a method for
obtaining an accurate analysis of the temperature profile along the
CNT-based interconnects.

Index Terms—Carbon nanotubes, interconnects, Joule heating,
thermal conductivity.

I. INTRODUCTION

THERMAL management in aggressively scaled low-
dimensional devices is gaining momentum and is one

of the key factors in the understanding of proper electrother-
mal analyses in modern state-of-the-art multilevel chip design.
Metallic single-walled carbon nanotubes (SWCNTs) have been
found to possess very high lattice thermal conductivity κ [1]–
[3], which makes them good candidates for potential thermal
materials over copper interconnects [4], [5]. Recently, there
have been few investigations that predict the electrical and
thermal characteristics of metallic SWCNT as interconnects
[5]–[9]. These studies are however based on the assumption
of either constant thermal conductivity over a wide range of
temperatures or possession of empirical dependence, together
with negligence of mass-difference scattering, which must be
taken into account to model the commonly encountered situa-
tion where the difference in the atomic mass of carbon atoms
are introduced unintentionally at the ends of the CNT under the
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prevailing fabrication methods [10]. This introduction of carbon
isotopes in pure SWCNT makes it an impure one and marks
wide variations in phonon-assisted thermal conductivity. Unlike
aluminum and copper, the thermal conductivity of SWCNT
exhibits an extremely nonlinear behavior over the temperature
zone of interest in interconnects [2]. This is due to the pres-
ence of second-order three-phonon Umklapp, mass difference,
and boundary-scattering phenomena, which characterize 1/T 2

behavior beyond room temperature [1], [2]. This nonlinearity
in the thermal conductivity results in an involved mathemat-
ical formulation of the solution of the Joule-heating equation
[11], [12].

Techniques for the solution of the Joule-heating equation,
when the thermal conductivity is a function of temperature,
[11], [13] are available; however, due to the presence of sin-
gularity [13] resulting from the available empirically derived
temperature-dependent κ for metallic SWCNT [1], a proper
solution is still unknown. Moreover, there are a few reports that
represent the numerical analysis of the Joule-heating equation
by considering a temperature-dependent thermal conductivity
of SWCNTs [9]. Although the solution to these numerical
models are important, an analytical method is also needed to
exhibit and explain the physical interactions among various
scattering phenomena, heat conduction, convection, and radia-
tion, particularly in the case of bundles of SWCNT as the state-
of-the-art vias surrounded by a dielectric. Since the difficulties
in fabrication of horizontally aligned local, intermediate, and
global interconnects using bundles of metallic SWCNTs are
one of the bottleneck issues in recent interconnect technology,
ease in the incorporation of their vertical bundles as vias de-
mands that an analytical Joule-heating conduction mechanism
in a single metallic SWCNT be the first step in the investigation
of accurate electrothermal study of the bundles.

In this paper, we address a closed-form solution of the
Joule-heating equation for metallic SWCNT using temperature-
dependent κ on the basis of the Umklapp, mass difference,
and boundary scattering phenomena. We use Kirchoff’s trans-
formation to linearize the relation between the fictitious and
actual temperatures [13]. With this, we demonstrate that the
temperature profile along the length of the SWCNT strongly
depends on not only the length but also the form factor of
the mass difference scattering. Additionally, we show that the
temperature rise in an impure SWCNT suffers wide deviation
from that of the pure at different current levels. Our analytical
model agrees well with the numerical solution as presented
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Fig. 1. Schematic representation of a suspended SWCNT of length L
(adapted after [9] and [12]), the two ends of which are fixed to the metallic
contacts with contact resistance Rc, at different temperatures Tl and Th. The
downward arrows represent the net heat loss per unit length to the substrate
SiO2, which is essentially the heat transfer coefficient g.

here and can be put forth to carry out an accurate analysis of
temperature profile in the CNT-based interconnects.

II. MODEL DEVELOPMENT

We start with the expression of the steady-state Joule-heating
equation with a temperature-dependent thermal conductivity
along the length of the SWCNT [1], [11]

A∇(κ∇T ) + p − g(T − T ′) = 0 (1)

where A = πdb is the cross-sectional area; d and b are the di-
ameter and the tube wall thickness of the SWCNT, respectively;
T ′ = 1/2(Th + Tl), Th, and Tl are the temperatures at two con-
tacts, i.e., the driving force for transport p = j2(ρ(T ) − ρc)A;
j is the current density in amperes per square meter through
the SWCNT; ρ(T ) and ρc are the total electrical resistivity of
the nanotube and contacts, respectively; L (in Fig. 1) is the
tube length; and g is the net heat loss to the substrate per unit
length, which is essentially the heat transfer coefficient. Fig. 1
represents the schematic diagram of a suspended SWCNT for
the present case. It should be noted that (1) is also known as
the fin equation [14], except for the additional term g. It is
well known that the diffusive electrical resistance of a metallic
SWCNT strongly depends on temperature, occurring due to the
longitudinal acoustic, longitudinal optical, and zone boundary
phonon-scattering phenomena [15]. However, in this case, we
have neglected these dependencies since, within a 2-µm via
length, the resistance is a weak function of temperature between
300 and 500 K [12].

In case of temperature-independent thermal conductivity,
using the boundary condition T (−L/2) = T (L/2) = T0, the
solution to (1) can be written as

T (x) = T0 +
p

g

[
1 − cosh(x/LH)

cosh(L/2LH)

]
(2)

where LH =
√

Aκ/g is the characteristic thermal heating
length along the SWCNT length and −L/2 < x < L/2.

For temperature-dependent thermal conductivity, the solu-
tion of (1) can be formulated by assuming a fictitious tempera-
ture θ(x) at each point x connected by the actual temperature T
through the steady-state Kirchoff’s transformation [11], [13] as

θ(x) = Tl +
1
κl

T∫
Tl

κ(T )dT (3)

where κl is the thermal conductivity of the SWCNT at lower
temperatures, which is usually termed as the sink point. The
temperature-dependent κ in the absence of mass difference
scattering, i.e., for a pure SWCNT, as a result of boundary and
second-order three-phonon Umklapp scatterings beyond room
temperature, can be written as [2]

κ(T ) =
1

3E

(
kB

2π2vg

) (
kBΘD

�

)3 ( vg

EL
+ T 2

)−1

(4)

where kB is the Boltzmann’s constant; vg = 104 ms−1 is
the phonon group velocity; ΘD = 1000 K is the Debye tem-
perature; � = h/2π, h is the Planck’s constant; and E =
(32/27)γ4(kB/Mv2

g)2ωB in which parameters γ = 1.24, ωB =
28 GHz, and M are the Gruneisen parameter, phonon branch
frequency at the zone boundary, and mass of the carbon atoms,
respectively [2].

Using (3) and (4), one can get an approximate linear relation-
ship between θ and T as

θ(x) = Tl +
a

Eκlb
(T − Tl) (5)

where a = 1/3(kB/2π2vg)(kBΘD/�)3, and b = vg/EL.
Using (5), (1) can be transformed into a linear differential

equation as

∇2θ − α2
1θ = β1 (6)

in which α2
1 = α2Eb/a, α2 = g/A, β1 = (β/κl − α2EbTl/

a + α2Tl/κl), and β = −(p + gT ′/A). Using the boundary
condition θ(−L/2) = θl and θ(L/2) = θh, the solution to (6)
can be written as

θ(x) = c1e
α1x + c2e

−α1x − β1

α2
1

(7)

where

c1 =
[(

θh + θl + 2β1/α2
1

)
sinh(α1L/2)

+(θh − θl) × cosh(α1L/2)]

× [4 sinh(α1L/2) cosh(α1L/2)]−1 (8)

c2 =
[(

θh + θl + 2β1/α2
1

)
sinh(α1L/2)

−(θh − θl) × cosh(α1L/2)]

× [4 sinh(α1L/2) cosh(α1L/2)]−1 (9)

in which, using (5), we get θl = Tl and θh = Tl + a(Th −
Tl)/Ebκl.

Thus, from (5), the actual temperature T can be written as

T (x) = Tl +
Eκlb

a
(θ(x) − Tl) . (10)

At this point, it should be noted that, in our model, we have
considered electrical contact resistance Rc at the interconnects
strictly to be an isothermal one, which, in general, is not, and
rather becomes surface energy balances. However, in a realistic
case, Rc depends on the type of metal. For instance, it would
be relatively low if the contacts were made up of Pt, Pd,
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etc. In such cases, these effects will not perturb much to the
temperature profile along the length of the SWCNT.

In the presence of mass difference scattering, κ can approxi-
mately be written as [2]

κ =
η

ξ

(
ET 2 +

vg

L

)−1

(11)

where η=kB/2π2vg(kB/�)3; ξ=15
√

2/π4(kB/�)3(V0ΓmL/
4πv4

g), in which V0(= htR
2
0) is the volume per atom; ht =

0.335 nm and R0 = 0.14 nm [2] are the effective wall thickness
and in-plane interatomic distance, respectively; and Γm is the
form factor of the mass difference scattering. It should be
noted that the electrical resistance of an SWCNT generally
arises due to different forms of scattering phenomena between
electrons and phonons. However, in case of an impure SWCNT,
the electrical resistance is independent of the mass difference
scattering, which arises due to the difference in atomic mass of
the carbon atoms.

Using (3) and (11), the approximate linear relationship be-
tween θ and T for the present case can be written as

θ(x) = Tl +
η

ξκlET 2
l

(T (x) − Tl) (12)

where the boundary conditions for θ are θl = Tl, and θh = Tl +
η/ξκlET 2

l (Th − Tl). The use of (3) and (12) in (1) results in a
similar linear differential equation

∇2θ − α2
2θ = β2 (13)

in which α2
2 = α2ξET 2

l /η and β2 = β/κl + α2Tl/κl −
α2ξET 3

l /η. Using the boundary condition θ(−L/2) = θl and
θ(L/2) = θh, the solution to (13) can be written as

θ(x) = c3e
α2x + c4e

−α2x − β2

α2
2

(14)

where

c3 =
[(

θh + θl + 2β2/α2
2

)
sinh(α2L/2) + (θh − θl)

× cosh(α2L/2)]

× [4 sinh(α2L/2) cosh(α2L/2)]−1 (15)

c4 =
[(

θh + θl + 2β2/α2
2

)
sinh(α2L/2)

−(θh − θl) × cosh(α2L/2)]

× [4 sinh(α2L/2) cosh(α2L/2)]−1 . (16)

Thus, using (12), the actual temperature can be written as

T (x) = Tl +
ξκlET 2

l

η
(θ(x) − Tl) . (17)

Equations (10) and (17) specify the temperature profiles along
the length of the SWCNT, whose extreme ends are at different
temperatures for pure and impure conditions, respectively. The
point where the temperature is maximum, which is also known
as the hot-spot location, along the length of the SWCNT for
both pure and impure cases, can be found by differentiating (10)

Fig. 2. T as function of x for pure metallic SWCNT for constant κ, our
analytical model and numerical model using I = 5 µA. (a) represents the three
models, with same temperature at the two ends of the tube. (b) represents all
the aforementioned models with one end at 300 K and other end is at 450 K.

and (17) with respect to x and equating it to zero. This can be
written as

xpure =
(

1
2α1

)
ln

∣∣∣∣c2

c1

∣∣∣∣ (18)

ximpure =
(

1
2α2

)
ln

∣∣∣∣c4

c3

∣∣∣∣ (19)

respectively.

III. RESULTS AND DISCUSSIONS

Using the aforementioned spectrum constants for metallic
SWCNTs, a consistent result is exhibited by the present analyt-
ical model, as shown in Fig. 2, for a length of 0.5 µm. We have
compared our analytical model (10) with that of the numerical
solution of (1) using (4) and with the analytical solution of
the Joule-heating equation for pure SWCNT having constant
κ, respectively. The temperature profile along the length of a
pure SWCNT has been plotted when both ends are at the same
temperature of 300 K and when one end is at 300 K and the
other is at 450 K, as shown in groups (a) and (b), respectively,
in Fig. 2. It is seen that there is less than 2% error between
our analytical model and the numerical solution. In the case
of constant κ, significant deviation is observed near both ends
of the tube when at different temperatures. The plot of the
analytical and numerical results at lower currents such as 5 µA
appears to be more linear than that compared with constant κ.
However, near the midpoint of the tube, they tend to have the
same value. It should be noted that, for a tube length of 0.5 µm,
sink temperature thermal conductivity has been taken to be
148 Wm−1K−1. Since it is known that an increase in the tube
length increases κ [2], it results in a more flattened nature of
the curve for the solution using a constant κ near the mid-zone
compared with our analytical and numerical solutions. In case
of 1-µm-long SWCNT and a very high current, e.g., 40 µA,
a complete nonlinear variation in the temperature profile
throughout the length is seen, as shown in Fig. 3. The sink
temperature thermal conductivity for such a case has been taken
to be 2000 Wm−1K−1. It appears that, when both ends are at
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Fig. 3. T as a function of x for all cases of Fig. 2 using I = 40 µA.

Fig. 4. T as a function of x for impure metallic SWCNT for our analytical
and numerical model using L = 0.5 µm and I = 40 µA when the two ends of
the tube are at (a) different temperatures of 300 and 450 K and (b) the same
temperature of 300 K. The arrow points the variation of Γm, starting from
5 × 10−3 in alternate decreasing steps of 1 and 5 × 10−1, respectively.

room temperature, a temperature difference of about 15 K is
exhibited.

The dependence of the temperature profile on the form factor
is exhibited in Figs. 4 and 5 for SWCNT lengths of 0.5 and
1 µm, respectively. In Fig. 4, we see that the use of the
solution for a pure SWCNT marks a significant difference,
compared with our analytical and numerical solutions for the
impure SWCNT. With the decrease in the magnitude of the
form factor or, in other words, the increase in the purity of
the SWCNT, the temperature rise also decreases. This is highly
expected in this case since a decrease in Γm indicates lesser
scattering due to the mass difference effect. This lowering of
the mass difference scattering increases sharply the thermal
conductivity of the SWCNT, which further lowers down the
overall rise in temperature. As Γm decreases, all the curves
in Fig. 4 for all the solutions tend to merge with their corre-
sponding saturation value of the pure SWCNT under identical
conditions. In addition, due to the temperature dependence
of the thermal conductivity in an impure SWCNT, there is a
significant deviation in T (x) between our analytical model and
the solution of constant κ for corresponding variation of Γm.
Using the analytical model, a temperature rise of about 400 K

Fig. 5. T as a function of x for impure metallic SWCNT for our analytical and
numerical models using L = 1 µm and I = 40 µA for all the cases of Fig. 4.

Fig. 6. Hot-spot location along the length of impure (Γm = 10−4) and pure
SWCNT as a function of T , whose one end is at 300 K, whereas the temperature
at the other end varies for different tube lengths of (a) 0.5 and (b) 1 µm.

near the middle of the SWCNT is exhibited with a form factor
of 1 × 10−6 and a current of 40 µA. However, it can be found
that, for the solution of constant κ, the temperature rise may
also overshoot to approximately double the former value. We
also see an approximately linear variation of T (x) along the
length, which is radically different from the curve of constant
κ, as presented in Fig. 2. In Fig. 5, we have shown the variation
of T (x) for different values of Γm, starting from 5 × 10−3 in
alternate decreasing steps of 1 and 5 × 10−1, respectively, for
both the aforementioned temperature conditions.

In Fig. 6, using (18) and (19), we have plotted the location
of hot spots along the length of the SWCNT as functions of
temperature with the analytical model for both pure and impure
tubes having lengths of 0.5 and 1 µm, respectively. Striking dif-
ferences are exhibited when compared to the curves in Fig. 6 for
both pure and impure SWCNT. For a particular SWCNT length,
in the presence of mass difference scattering, a wide separation
is observed. It appears that, for a 1-µm tube length and a current
of 40 µA, the hot-spot location can reach up to 0.98 µm from
the sink point contact for an impure SWCNT with Γm = 10−4

between room temperature and 420 K. However, for a 0.5-µm
SWCNT with the same level of impurity, the hot-spot location
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is about 0.48 µm from the sink point contact. It should be noted
that the hot-spot location appears only when both c1 and c2 for
pure SWCNT and c3 and c4 for impure SWCNT are of the same
sign for definite values of source and sink point temperature and
current levels.

In each of Fig. 2–6, the thermal conductivity for every case
has been evaluated by considering the corresponding Γm. Ap-
proximations have been laid down to make the relation between
θ and T linear in order to generate a closed-form solution of (3).
This leads to a maximum error between our analytical model
and the numerical solution within 5%. This mismatch between
the analytical and numerical solutions is due to the fact that
the higher order terms appearing in (3) have been neglected
because of the involved expression of κ on T in both limits
T and Tl. It should be noted that both (6) and (13) have been
obtained by linearizing the relation between θ and T in (5)
and (12), respectively. Without these approximations, it would
not be possible to obtain closed-form solutions for the actual
temperature T (x) for both pure and impure SWCNTs. For an
impure SWCNT case, approximations have been adopted in
(12) using (11) in (3) for limits T and Tl. We have assumed
that, for a pure SWCNT within the temperature regime of
300–450 K, (θ − Tl)/a

√
bEκl ≈ 0 and Tl(θ − Tl)/aEκl � 1,

which lead to (10). For the impure SWCNT, the approximation
that makes the relation between θ and T a linear one is
ξκETl/η(θ − Tl) < 1. This approximation can generally be
accepted for a current range below 80 µA and Γm ≤ 10−3. At
this point, it is to be noted that an accurate electrothermal mod-
eling demands an exact solution of the Joule-heating equation
(1), where a proper definition of the heat loss to the substrate
per unit length for different lengths of SWCNT under different
physical conditions and resistance as function of temperature is
needed. In this paper, we have neglected these issues and have
considered g = 0.17 Wm−1K−1 [12] and R − Rc = 30 kΩ,
where R is the electrical resistance of the SWCNT and the
value of Rc depends on the type of metal contact with SWCNT.
However, there is no loss of generality in defining temperature-
independent resistance approximation in this work since, below
a length of 2 µm, the mean-free path of electrons in the metallic
SWCNT are weakly dependent on temperature. In addition, the
variation of g can be treated to be a geometrical issue and may
be asserted as a user-defined parameter. In case of SWCNT via
lengths > 2 µm, one has to specifically solve (1) by considering
a temperature-dependent resistance model.

We wish to state that the present formulation is based on the
derivation of diffusive longitudinal lattice thermal conductivity.
It is well known that the thermal conductivity of SWCNT
is anisotropic, where the transverse conduction differs widely
and is, presumably, orders of magnitude lower than the lon-
gitudinal conduction due to extremely high aspect ratio [16].
Although the longitudinal thermal analysis of an individual
metallic SWCNT on oxide has been recently reported [12], the
heat transport mechanism in their bundles as interconnects by
considering the thermal crosstalk along the transverse direction
is not fully understood yet. At this stage, the analysis of the
temperature profile by considering the lateral thermal conduc-
tivity is beyond the scope of this study. The methodologies
assigned in this work can be useful for an accurate analy-

sis of temperature profile along the CNT-based interconnects,
where the thermal conductivity is mainly determined by its
diffusive part.

IV. CONCLUSION

Using a temperature-dependent thermal conductivity model,
this paper has addressed a closed-form analytical solution of the
Joule-heating equation in metallic SWCNTs. The effect of mass
difference scattering has also been introduced for a complete
electrothermal analysis of impure SWCNTs. It has been found
that an increase in the form factor of the mass difference
scattering severely increases the temperature rise along the
length of the SWCNT. In addition, we have compared our
analytical results with the corresponding numerical solutions
and the solutions for constant thermal conductivity. For all
the cases, our analytical model agrees well with the numerical
solution.
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