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Modeling and Analysis of Body Potential of
Cylindrical Gate-All-Around Nanowire Transistor

Biswajit Ray and Santanu Mahapatra, Member, IEEE

Abstract—A new physically based classical model for the poten-
tial distribution of an undoped body cylindrical gate-all-around
nanowire transistor is proposed. The model is based on the analyt-
ical solution of 2-D Poisson’s equation in a cylindrical coordinate
system and is valid for both 1) weak and strong inversion regimes,
2) long and short-channel transistors, and 3) body surfaces and
centers. Using the proposed model, for the first time, it is demon-
strated that the body potential versus gate voltage characteristics
for the devices having equal channel lengths but different body
radii pass through a single common point (termed a “crossover
point”). It is found that, at this crossover point, there is no poten-
tial drop (“pseudo flatband condition”) along the radial direction.
Using the concept of crossover point, the effect of body radius
on the threshold voltage of undoped body multigate transistors
is explained. Based on the proposed body potential model, a new
compact model for the subthreshold swing is formulated. It is
shown that for the devices having very high short-channel effects,
the effective subthreshold slope factor is mainly dictated by the
potential at the body center rather than that at the surface. All
the models are validated against a professional numerical device
simulator.

Index Terms—Gate all around (GAA), multigate transistor,
short-channel effects (SCE), subthreshold slope, undoped body,
virtual cathode.

I. INTRODUCTION

THE UNDOPED cylindrical body gate-all-around (GAA)
field effect transistor, which offers maximum gate control

over the channel and zero corner effect, is appearing as a
promising candidate for sub-45-nm technology nodes [1]–[3].
It is therefore extremely necessary to develop compact models
for GAA transistors in order to use them in nanoscale integrated
circuit design and simulation.

There is, however, a sharp distinction between the electrosta-
tics of traditional bulk transistors and undoped body devices. In
bulk transistors, where the substrate is sufficiently doped, the
inversion charges are located close to the surface, and hence,
the surface potential solely controls the electrostatic integrity
of the device. However, in undoped body devices, the gate
electric field penetrates the body center, and inversion charge
exists throughout the body. In contrast to the bulk transistors,
depending on device geometry, the potential of the body center
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Fig. 1. Electron concentration at the cross section of GAA nanowire for
R = 10 nm and L = 20 nm. Here, the dark region corresponds to higher
mobile charge concentration. (a) Vgs = 0 V. (b) Vgs = 1 V.

of undoped body devices could be higher than the surface
in weak inversion regime and the current flows through the
center part of the device instead of the surface (see Fig. 1).
Several crucial parameters (e.g., subthreshold slope) sometimes
become more dependable on the potential of body center rather
than that of the surface. Hence, the body-center potential should
also be modeled correctly along with the surface potential for an
accurate calculation of inversion charge, threshold voltage, and
other related parameters of undoped body multigate transistors.
Although potential models for GAA transistors [4] and other
undoped body multigate transistors [5], [6] have been reported,
most of them fail to capture the potential of body center
correctly. This is due to the fact that the effect of lateral electric
field (short-channel effect) is much more pronounced at the
body center than at the surface. Hence, the approximations
earlier taken to solve Poisson’s equation hold good only at the
surface but break down at the body center. Due to the same
reasons, most of those models remain valid only in the weak
inversion regime.

In this paper, we propose a new physical model for the body
potential of GAA transistors which is much more accurate than
the previous model [4] and capable of predicting the potential
at any point of the body with excellent accuracy in both
weak and strong inversion regimes. The model is developed
by solving 2-D Poisson’s equation in cylindrical coordinate
system with some realistic approximations and verified with
numerical device simulator (Sentaurus [7]). Using the proposed
model, for the first time, we demonstrate that the body potential
versus gate voltage characteristics for the devices having equal
channel lengths but different body radii pass through a single
common point, which is termed as “crossover point.” It is
found that, at crossover point, there is no potential drop along
the radial direction, and hence, the related gate voltage could
be treated as “pseudo flatband voltage.” Using the concept
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Fig. 2. (a) Schematic of cylindrical GAA nanowire transistor. (b) Boundary
conditions for Poisson’s equation (1) on a cross section starting from body
center.

of crossover point, the effect of body radius on the threshold
voltage of undoped body multigate transistors is explained.
Based on the proposed body potential model, a new model for
subthreshold slope is formulated. Some other parameters, e.g.,
inversion charge, short-channel effect (SCE), and position of
virtual cathode, are also studied to demonstrate the impact of
body center potential on the electrostatics of GAA transistors.

II. MODEL DERIVATION

Fig. 2 shows the 3-D structural view of the cylindrical GAA
transistor considered in this work. With the assumptions that the
channel is undoped and has a large diameter (> 5 nm) to ignore
energy quantization, the electrostatics of the channel region is
solely governed by the following Poisson’s equation, with only
mobile charge term included:

∇2Ψ(r, x) =
q

εSi
nie

(Ψ(r,x)−ΨF )/UT . (1)

The boundary conditions for this partial differential equation
(PDE) are shown in Fig. 2, where Ψ(r, x) is the potential at
the point (r, x), q is the electronic charge, ni is the intrinsic
electron density in silicon, UT is the thermal voltage, Φms is
the gate workfunction referenced to intrinsic silicon, Vbi is the
n+ − i diode’s built-in potential, Cox is the cylindrical gate
oxide capacitance (Cox = εox/(R ln(1 + Tox/R)) [8]), Tox is
the gate oxide thickness, εox and εSi are the permittivities
of gate oxide and silicon, respectively, Vgs and Vds are the
applied gate and drain voltages, respectively, and ΨF is the
electron quasi-Fermi level. As described in [5] and [6], ΨF is
approximated to be zero throughout the channel for low Vds.
It is worth noting that here, we have neglected the hole con-
centration, and thus, the model is only valid for Ψ > 3UT [10],
where hole concentration will be very less compared to electron
concentration.

To solve this Poisson’s equation, we split the total potential
Ψ in the following three components: 1) long-channel potential
profile Ψ0(r); 2) Laplace part including all the boundary con-
ditions ΨL(r, x); and 3) the remaining nonlinear part with all
the boundary conditions set to zero ΨN (r, x)

Ψ(r, x) = Ψ0(r) + ΨL(r, x) + ΨN (r, x). (2)

It should be noted that the ΨN (r, x) component was approxi-
mated to be zero in the previous model [4]. In the subsequent
sections, we will show that, if the ΨN (r, x) component is
neglected, the model 1) predicts the surface potential quite
accurately in weak inversion but overpredicts in the strong and
moderate inversion regions, 2) predicts the body center poten-
tial quite inaccurately both in weak and strong inversion, and
3) does not show any crossover point. However, the subthresh-
old slope is a weak function of ΨN (r, x), and the contribution
of the ΨN (r, x) component is only visible for those devices
(2R/L > 1) where the SCE is extremely high. The ΨN (r, x)
component is mainly required for the precise calculation of
other parameters like inversion charge, current, and threshold
voltage where the potential of body center and surface needs to
be modeled very accurately.

In order to obtain the total potential profile, we divide the
main Poisson’s equation (1) in the following three subproblems:

Problem-1

∇2Ψ0(r) =
q

εSi
nie

Ψ0/UT (3)

with boundary conditions

εSi
∂Ψ0

∂r

∣∣∣∣
r=R

= Cox (Vgs − Φms − Ψ0(R)) (4)

∂Ψ0

∂r

∣∣∣∣
r=0

= 0 (5)

Problem-2

∇2ΨL(r, x) = 0 (6)

with boundary conditions

ΨL(r, 0) = Vbi − Ψ0(r) (7)

ΨL(r, L) = Vbi + Vds − Ψ0(r) (8)

εSi
∂ΨL

∂r

∣∣∣∣
r=R

= −CoxΨL(R) (9)

∂ΨL

∂r

∣∣∣∣
r=0

= 0 (10)

Problem-3

∇2ΨN (r, x) =
q

εSi
nie

Ψ0/UT

(
e(ΨL+ΨN )/UT − 1

)
(11)

with boundary conditions

ΨN (r, 0) = 0 (12)

ΨN (r, L) = 0 (13)

εSi
∂ΨN

∂r

∣∣∣∣
r=R

= −CoxΨN (R) (14)

∂ΨN

∂r

∣∣∣∣
r=0

= 0. (15)
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Problem-1 is an ordinary differential equation (ODE) whose
solution is given in

Ψ0(r) = UT ln
8B

(1 − Br2)2δ
(16)

where B is a parameter whose value depends on Vgs according
to (17) which is derived from the boundary condition (4) of
Problem-1

Vgs − Φms = ln
8B

(1 − BR2)2δ
+

4UT εSiBR

Cox(1 − BR2)
(17)

and δ is a constant whose value is

δ =
qni

εSiUT
. (18)

Although the expression of B (17) is implicit, it can be calcu-
lated explicitly with high accuracy as shown in [9].

Problem-2 is a mixed boundary value problem which can be
solved by variable separation method. As a similar problem
is solved in several articles [4], [11], we are giving here the
final solution without any derivation. The final solution can be
written in terms of an infinite series as follows:

ΨL(r, x) =
∞∑

n=1

[
An sinh

(µnx

R

)
+ Bn sinh

(
µn(L − x)

R

)]

× J0

(µnr

R

)
(19)

where An and Bn are given by

An =
2

∫ R

0 r (Vbi + Vds − Ψ0(r)) J0

(
µnr
R

)
dr

R2 sinh
(

µnL
R

)
[J2

0 (µn) + J2
1 (µn)]

≈
2

(
Vbi + Vds − UT ln

(
8B
δ

))
J1(µn)

µn sinh
(

µnL
R

)
[J2

0 (µn) + J2
1 (µn)]

(20)

Bn =
2

∫ R

0 r (Vbi − Ψ0(r)) J0

(
µnr
R

)
dr

R2 sinh
(

µnL
R

)
[J2

0 (µn) + J2
1 (µn)]

≈
2

(
Vbi − UT ln

(
8B
δ

))
J1(µn)

µn sinh
(

µnL
R

)
[J2

0 (µn) + J2
1 (µn)]

. (21)

The eigenvalue µn can be found from the following relation
which gives infinitely possible values of µ:

µn
J1(µn)
J0(µn)

=
CoxR

εSi
. (22)

Here, J0 and J1 are the Bessel’s functions of types zero and one,
respectively [12]. Although the expression of ΨL(r, x) consists
of an infinite number of terms, it is explicit w.r.t. Vgs, and also, it
is found that the higher order (n > 3) terms vanish very rapidly.

Problem-3 is a nonlinear second order PDE which is solved
in the neighborhood of the boundary r = 0 (For details of the

solving procedure, see the Appendix). The final solution can be
given as

ΨN (r, x) = (ΨL(r, x) − V0)

(
cosh

{
P

(
L
2 − x

)}
cosh

(
PL
2

) − 1

)
(23)

where P and V0 are functions of r as given in

P =
√

qni

εSiUT
e

Ψ0(r)
2UT (24)

V0 =UT

[
1 +

ΨL(r, x) + ΨN

(
r, L

2

)
UT

− exp
((

ΨL(r, x) + ΨN

(
r,

L

2

))/
(UT )

) ]
.

(25)

Therefore, the expression of ΨN is implicit because V0 first has
to be calculated from (23) at x = (L/2). However, we solve the
resulting equation for ΨN (r, (L/2)) by Halley’s method [14].
By simulation, we observe that the value of ΨN (r, (L/2)) lies
in the range 0–−3UT , and hence, we take the initial guess for
the iteration as −UT which gives excellent accuracy in the first
iteration itself. The final expression for ΨN (r, (L/2)) obtained
by Halley’s method is given in

ΨN

(
r,

L

2

)
≈ ΨN0 −

(
1 +

1
2

Lf (ΨN0)
1 − 1

2Lf (ΨN0)

)
f(ΨN0)
f ′(ΨN0)

(26)

where

Lf (ΨN0) =
f ′′(ΨN0)f(ΨN0)

f ′(ΨN0)2
(27)

f(ΨN ) = ΨN − UT

(
1 − cosh

(
PL

2

))(
e

ΨL+ΨN
UT − 1

)
(28)

where ΨN0(= −UT ) is the initial guess. This one step iteration
scheme makes the expression of ΨN (r, x) explicit, and be-
cause Ψ0 and ΨL are also explicit, hence, the overall potential
(Ψ(r, x)) model becomes an explicit function of Vgs.

III. RESULTS AND DISCUSSION

A. Model Verification

The proposed body potential model is verified against the
data obtained from numerical device simulator Sentaurus [7]
for different device geometries. From Fig. 3(a)–(d), one can
observe that the proposed model predicts the surface as well as
the body center potential quite accurately both in the subthresh-
old and strong inversion regions. It can also be observed [from
Fig. 3(e)] that, without the ΨN component (which is equivalent
to the previous model [4]), there is a significant mismatch be-
tween simulation- and model-predicted results for body center
potential. This mismatch increases with an increasing value of
2R : L ratio, which leads to higher SCEs. Fig. 3(f) shows the
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Fig. 3. Validation of (solid curves) analytical model with the (symbols) numerical simulation results obtained from Sentaurus device simulator. (a) Surface
potential (Ψs) versus gate voltage (Vgs) at x = L/2 for a fixed channel length L = 20 nm. (b) Body center potential (Ψb) versus gate voltage (Vgs) at x = L/2
for a fixed channel length L = 20 nm. The same has been shown in the inset without considering the ΨN part. (c) Surface potential versus gate voltage for a fixed
channel radius R = 10 nm. (d) Body center potential versus gate voltage at x = L/2 for a fixed channel radius R = 10 nm. (e) Ψs, Ψb, and Ψ(r = R/2) at x =
L/2 calculated (solid lines) considering the ΨN (r, x) term and (dashed lines) not considering the ΨN (r, x) term. (f) Potential distribution along the channel
with only (dashed line) the first term of series solution and (solid lines) ten terms. The top and bottom curves denote the potential distribution at surface and the
two intermediate curves are for body center. In all the cases, Vds = 0 V and Tox = 1 nm, midgap gate metal is used.

effect of the number of terms in the series solution on total po-
tential (Ψ(r, x)) calculation. We observe that considering only
the first term in the series solution introduces considerable error
at source and drain boundaries; however, the potential at L/2
(virtual cathode) remains almost unaffected. All the potential
versus Vgs characteristics in Fig. 3 are shown considering only
the first term of the series solution.

B. Crossover Point and Pseudo Flatband Condition

The most crucial observation made in this work is the
crossover point. From Fig. 3(e), we note that the potential at
the surface, body center, and at r = R/2 crosses through a
common point for a particular gate voltage (VFB). This implies
that, at VFB, there is no potential drop along the radial direction
from body center to the surface. This is precisely the flatband
condition. However, we attribute this situation as pseudo flat-
band condition because there exists potential variation along
the lateral direction. Interestingly, it is also observed that (inset
of Fig. 4) VFB is almost independent of the variation of body
radius when channel length is constant, or in other words,
devices having the same L but different R hold almost the same
value of VFB. Hence, for a given L and different R’s, if we plot
potential as a function of Vgs at a particular radial point (R · m),

Fig. 4. Change of Ψcross as a function of L. Inset shows VFB as a func-
tion of R.

where m(< 1) is a constant, all the characteristics should pass
through the common “flatband” point, which we termed as
crossover point [Fig. 3(a) and (b)]. The body potential related to
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this point is denoted by Ψcross. From Fig. 3(e), we can see that
the previous model predicts the VFB incorrectly, and thus, it also
fails to predict the crossover point [inset of Fig. 3(b)]. One more
observation made in this work is that the value of Ψcross in-
creases with decreasing channel length as shown in Fig. 4. This
is due to the fact that, for long-channel devices Ψ ∼ Ψ0 and for
positive Vgs (more precisely for Vgs > Φms), Ψ0(R) > Ψ0(0).
Hence, for long-channel devices, VFB ≈ 0 (or Φms). However,
for short-channel devices, because of the contribution of ΨL

and ΨN , Ψ(R) could be less than Ψ(0) for positive Vgs. Hence,
in order to bring the Ψ(R) equal to Ψ(0), one needs higher gate
voltage. As a result, Ψcross increases with decreasing L. This
phenomenon has a critical effect in determining the threshold
voltage of the transistor as discussed in the next section.

C. Effect of Body Radius on Threshold Voltage

So far, two definitions for threshold voltage (VTH) calcula-
tion is used for short-channel undoped body transistors. The
first one is surface potential based [6], which is similar to the
definition of the threshold voltage of bulk devices. The second
one [4], [5] is based on the amount of charge per unit area of the
body. The charge-based method is argued to be more accurate
as, in undoped body transistors, charge exists throughout the
body. In the second method, the threshold voltage is defined as
the gate voltage at which the charge per unit area (Q) at the
virtual cathode becomes equal to some critical threshold charge
(QTH), where the Q is defined as

Q = qni

∫ R

0

eΨ(r,Xc)/UT dr. (29)

Here, Xc is the position of virtual cathode, which is approxi-
mately equal to L/2 for low Vds. Now, as Ψ(r,Xc) is a very
complicated function of r, the aforementioned integration can-
not be evaluated analytically. Therefore, in common practice,
the integration is approximated as

Q ≈ qnie
Ψ(R/2,Xc)/UT R. (30)

Now, the threshold criteria Q = QTH can be expressed in terms
of potential as

Ψ(R/2,Xc)TH = UT ln
(

QTH

qniR

)
. (31)

If we use surface potential-based definition (i.e., inversion takes
place when Ψs becomes equal to some constant critical value
Ψcrit), the relative value between Ψcrit and Ψcross will dictate
how the VTH will change with R for a given channel length.
If Ψcrit > Ψcross, the threshold voltage will decrease with R.
However, the opposite trend will be observed for devices having
Ψcrit < Ψcross. Therefore, surface potential-based definition
results in anomalous change in threshold voltage for body ra-
dius variation for any given channel length. As Ψcross increases
with decreasing L (see Fig. 4), it is expected that, for small
channel lengths, VTH should increase with R, and for large L,
it should exhibit the opposite trend. It is worth noting that such
anomalous trend was earlier reported by Park and Colinge [1]
for doped body devices. However, the similar conclusion cannot

TABLE I
SUBTHRESHOLD SLOPE FACTOR

be drawn for the charge-based definition as the Ψ(R/2,Xc)TH

varies with R.

D. Modeling of Subthreshold Slope

The subthreshold slope (S) is defined as

S = 2.3UT η(reff) (32)

where η is known as subthreshold slope factor. For bulk devices,
η is calculated from the inverse slope of surface potential versus
gate voltage characteristics. However, it is not so straightfor-
ward in the case for undoped body devices. In Table I, ηIV

represents the actual subthreshold slope factor extracted from
the Id−Vgs plot (obtained from the Sentaurus device simulator),
and ηb and ηs represent the slope factor value extracted from the
Ψ(0, L/2) − Vgs and Ψ(R,L/2) − Vgs characteristics, respec-
tively. From this table, it can be seen that for undoped body
devices, η is a function of radial distance (r), and the effective
subthreshold slope factor could be denoted as η(reff), where
reff represents the radial position of the effective conducting
path [13].

As observed from Fig. 3(a)–(b), for undoped body devices
in subthreshold regime, body center potential could be greater
than the surface, and thus, the body center provides the most
leaky path for subthreshold current conduction. Hence, if we
calculate η at body center, it will give the worst case value
of S. As we can see from Table I, the actual S value will be
intermediate of the S value calculated at the surface and at the
center. Therefore, in order to accurately model the subthreshold
slope, we need to define an effective conducting path some-
where in between surface and center as described in [13]. As
a first order approximation, reff = (R/3) is taken in this work,
and for this assumption, we get an excellent match with the
Sentaurus results as shown in Fig. 5. The expression for S is
derived from the potential model as shown in

S = 2.3UT η(reff) = 2.3UT

[
∂Ψ(r, x)

∂Vg

]−1
∣∣∣∣∣
r=reff ,x= L

2

(33)

where

∂Ψ(r, x)
∂Vg

=


1+α+

α
(
1−cosh

(
PL
2

))
+

(
1−e

−ΨL+ΨN
UT

)

e
−ΨL+ΨN

UT −
(
1−cosh

(
PL
2

))



(34)



2414 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 9, SEPTEMBER 2008

Fig. 5. Subthreshold slope variation with channel length L. Symbol represents
Sentaurus simulation results and solid line is from model. The dotted line
represents the subthreshold slope curve not considering ΨN (r, x) component.

Fig. 6. Inversion charge as a function of gate voltage calculated numerically
(29) as well as analytically (30). Symbols represent simulation results, solid
lines are for model including ΨN , and the dashed lines are for the model
excluding ΨN . Between the two solid lines (as well as the two dashed lines),
the lower one represents the analytical calculation of Q (30), whereas the upper
one corresponds to the numerical evaluation of Q (29).

with

α =
∞∑

n=1


 −4J1(µn)

µn(J2
0 (µn) + J2

1 (µn))
sinh

(
µnx
R

)
sinh

(
µnL
R

)J0

(µnr

R

)
 .

(35)

From Fig. 5, it can be seen that the ΨN (r, x) component plays a
significant role in the subthreshold slope expression when SCE
is too severe (for device geometry 2R/L > 1).

E. Inversion Charge and SCE

Inversion charge (coulomb per square meter) at x = (L/2)
is calculated using (29) and (30) with and without considering
the ΨN term in Fig. 6. We observe that the approximation used
for the evaluation of the integral (29) is valid in the moderate

Fig. 7. Magnitude of threshold voltage rolloff due to SCE is plotted for
different channel lengths. Symbols represents simulation results, solid lines are
for the model including ΨN , and the dashed lines are for the model excluding
ΨN . Between the two solid lines (as well as the two dashed lines), the upper
one represents the analytical calculation of Q (30), whereas the lower one
corresponds to the numerical evaluation of Q (29).

inversion regime, and hence, the analytical expression for Q
(30) can be used for the evaluation of VTH and SCE without
incorporating much error, which has been shown in Fig. 7.
For the calculation of VTH and hence SCE, we make use of
the charge-based definition as described in Section III-C with
QTH = 8 × 10−4 C/m2. Both the figures clearly demonstrate
the necessity of ΨN in the calculation of inversion charge and
SCE accurately.

F. Virtual Cathode Position

Virtual cathode point (Xc) denotes the position of minimum
potential point in the channel. For low Vds, it is approximately
located at L/2, but for higher Vds, it gradually moves toward
the source side. Therefore, for high Vds, in order to get an ex-
pression of Xc, we need to solve the equation (dΨ/dx) = 0 for
a particular r. Now, “strictly speaking,” our model derivation is
not valid for high Vds as, in that case, the assumption of zero
Fermi potential throughout the channel does not hold good.
However, for low Vgs, neglecting the ΨN (r, x) term (see the
Appendix), it is found that the model can predict the potential
profile with acceptable accuracy even for high Vds(∼1 V). Now,
(dΨ/dx) = 0 gives us the following:

∞∑
n=1

[
Anµn cosh

(
µnXc

R

)
− Bnµn cosh

(
µn(L − Xc)

R

)]

× J0

(µnr

R

)
= 0. (36)

Xc can be evaluated from the aforementioned expression nu-
merically. One interesting observation is made from (36)—that
for a given Vds and Vgs, Xc position moves gradually toward
the source side as one goes from surface to body center. This
is shown in Fig. 8 and validated with the numerical simulation
results. We also note from the figure that there is a considerable
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Fig. 8. Virtual cathode position (measured from the source junction) as
a function of radial distance for different channel lengths. Symbols repre-
sent simulation results and solid lines are for the model. Here, Vds = 1 V,
Vgs = 0.1 V, Tox = 1 nm, and midgap gate metal is used.

amount of error between model and simulation for a device with
R = 15 nm and L = 20 nm. This is due to the ΨN (r, x) term,
which cannot be evaluated properly for high Vds and hence
neglected in this derivation. We also observe from the figure
that for (2R/L) < 1, Xc becomes independent of r and (36)
can be simplified to

Xc =
R

2µ1

(
ln

B1 − A1e
µ1L/R

A1e−µ1L/R − B1

)
. (37)

It is worth noting that, if Xc varies with r, (29)–(31) cannot be
used to calculate VTH. Therefore, we need to propose a more
careful definition of VTH in order to correctly evaluate the effect
of Vds variation on it (DIBL). In this scenario, the calculation
of Q (29) at Xc(R/2) might give a better result.

IV. CONCLUSION

In this paper, a new physically based classical model for the
potential distribution of undoped body cylindrical GAA nano-
wire transistors is proposed by solving 2-D Poisson’s equation
in cylindrical coordinate systems. The proposed model shows
excellent accuracy with a professional device simulator in
predicting the potential at any point of the body in both weak
and strong inversion regimes. Using the proposed model, it is
demonstrated that the body potential versus gate voltage char-
acteristics for the devices having equal channel lengths but dif-
ferent body radii pass through a single common crossover point.
The concept of crossover point is used to explain the effect of
body radius on the threshold voltage of undoped body multigate
transistors. A new compact model for the subthreshold slope
is formulated from the proposed body potential model. The
improvement of the proposed model over the previous model
is reflected in subthreshold slope, SCE, and inversion charge
calculation.

APPENDIX

We solve the nonlinear PDE (11) in the neighborhood of
the boundary r = 0 at which both the r dependent terms of
the Laplace operator vanish ((∂ΨN/∂r) = (∂2ΨN/∂r2) = 0).
Hence, the PDE reduces to an ODE of x where the terms
dependent on r are treated as constants. Therefore, the resulting
ODE takes the following form:

d2ΨN

dx2
=

q

εSi
nie

Ψ0/UT

(
e(ΨL+ΨN )/UT − 1

)
. (38)

If we treat ΨL(r, x) also as a constant and substitute y =
(ΨL + ΨN )/UT , then the aforementioned ODE transforms
into following form:

d2y

dx2
=P 2(ey − 1) (39)

or
1
2

(
dy

dx

)2

=P 2(ey − y) + C0 (40)

or
1
2

(
dy

dx

)2

= y′′ − P 2y + P 2 + C0. (41)

Now, we put y′ = 0 in the LHS of (40) in order to calculate
the value of integration constant C0 as C0 = P 2(ymin − eymin).
For low Vds, ymin occurs near x = L/2. However, (41) cannot
be solved analytically. Therefore, we approximate (41) by
making the LHS zero, and this approximation works very well
for the channel region away from S/D boundaries. Hence, the
final ODE becomes

y′′ − P 2y + P 2 + C0 = 0 (42)

which can be solved analytically, and the final solution is given
in (23).
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