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Abstract—In this paper, we show the limitations of the
traditional charge linearization techniques for modeling
terminal charges of the independent double-gate metal–
oxide–semiconductor field-effect transistors. Based on our
recent computationally efficient Poisson solution for independent
double gate transistors, we propose a new charge linearization
technique to model the terminal charges and transcapacitances.
We report two different types of quasistatic large-signal models for
the long-channel device. In the first type, the terminal charges are
expressed as closed-form functions of the source- and drain-end
inversion charge densities and found to be accurate when the
potential distribution at source end of the channel is hyperbolic
in nature. The second type, which is found to be accurate in all
regimes of operations, is based on the quadratic spline collocation
technique and requires the input voltage equation to be solved two
more times, apart from the source and drain ends.

Index Terms—Charge linearization, compact modeling, inde-
pendent double-gate metal–oxide–semiconductor field-effect tran-
sistors (IDG MOSFETs), terminal charge, transcapacitance.

I. INTRODUCTION

THE independent double-gate metal–oxide–semiconductor
field-effect transistor (IDG MOSFET) has received con-

siderable attention in recent years due to its ability to dynami-
cally modulate threshold voltage and transconductance. So far,
few analytical models [1]–[8] are proposed for IDG MOSFETs.
However, to the best of our knowledge, no quasistatic large-
signal model has been proposed, which is the integral part of
any realistic compact model. This case is probably because
of the asymmetric nature of electrostatic potential, making it
difficult to linearize the inversion charge [9], which is the
fundamental step for developing efficient large-signal models.

In this paper, we show that the charge linearization tech-
niques used so far in professional compact models [10]–[12]
might not be suitable for modeling terminal charges of the
generalized IDG MOSFETs. Based on the computationally
efficient Poisson solution [1], we propose a new charge lin-
earization technique for modeling the terminal charges and
transcapacitances. We report two different quasistatic large-
signal modeling schemes for the long-channel IDG MOSFET.
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In the first scheme, the terminal charges are expressed as
closed-form functions of the source- and drain-end inversion
charge densities and are found to be accurate when the potential
distribution at the source end of the channel is hyperbolic in
nature. The second scheme, which is found to be accurate
in all regimes of operations, is based on the quadratic spline
collocation technique and requires the input voltage equations
(IVEs) to be solved two more times, aside from the source and
drain ends.

II. LIMITATIONS OF CONVENTIONAL CHARGE

LINEARIZATION SCHEMES

Let us conceive an undoped (or lightly doped) body long-
channel IDG MOSFET where L is the channel length, W is
the channel width, μ is the effective mobility, Coxf(b) is the
oxide capacitance per unit area of front(back)-gate defined
as εox/toxf(b), εsi, εox are the permittivities, and tsi and tox
are the thicknesses of silicon and SiO2, respectively. q is the
elementary charge, β the is inverse thermal voltage, ni is the
intrinsic carrier density, V is the electron quasi-Fermi potential
(channel potential), ψf(b) Si/SiO2 is the interface potential at
x = ∓tsi/2, with x = 0 being the center of the Si film, and
Vgsf(b) is the effective front(back)-gate voltage, i.e., Vgsf(b) =
Vgsf(b)applied − Δφf(b), where Δφf(b) is the work function
difference at the respective gates.

The proposed charge linearization technique is based on
our recent paper on the Poisson solution for IDG MOSFETs
[1], which consists of the complementary expressions of the
electrostatic potential for the biased conditions Vgsf ≥ Vgsb and
Vgsf < Vgsb. Note that another independent recent publication
[13] has also proposed the explicit formulation of critical
voltage, which decides between the trigonometric or hyperbolic
solution. The main difference between [1] and [13] is that the
solution in [13] depends on coupled implicit IVEs. Due to space
limitations, we explain our modeling technique only for the
case of Vgsf ≥ Vgsb. It is imperative that the same technique
remains applicable to the other case.

The rigorous (exact) drain current (Id) model of an IDG
MOSFET as proposed by Liu et al. [3] can also be written as

Id = Idf + Idb (1)

where

Idf =μ
W

L

[{
Q2

ifs

2Coxf
+

2
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Qifs
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Fig. 1. Exact drain current Idexact and the approximated drain current Idapprox as numerically obtained. Idapprox are calculated from (1)–(3), excluding the
G and integral terms. The device parameters are toxf = 1 nm, toxb = 2 nm, and tsi = 10 nm, and the bias voltages are Vds = 1 V, Vgsb = 0 V.
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In the aforementioned expressions, the front- and back-gate
inversion charge densities are given by

Qifs(d) =Coxf

(
Vgsf − ψfs(d)

)
(4)

Qibs(d) =Coxb

(
Vgsb − ψbs(d)

)
(5)

and α =
√
|G|/

√
Beβ(ψf−V ), with the coupling factor G as

G =
{

Coxf

εSi
(Vgsf − ψf )

}2

− Beβ(ψf−V ). (6)

Here, the subscripts “s” and “d” denote the source end
(where V = Vs) and drain end (where V = Vd) of the channel,
B = 2qni/βεsi, and the hyperbolic and the trigonometric
Poisson solutions are written together as sin(h) to avoid du-
plication in the derivations.

According to the Ward–Dutton charge partition theory [14],
terminal charges associated with front-gate, back-gate, drain,
and source terminals could be given as

Qgf =W

L∫
0

Qif(y)dy (7)

Qgb =W

L∫
0

Qib(y)dy (8)

Qd = − W

L∫
0

y

L
Qi(y)dy (9)

Qs = − (Qgf + Qgb + Qd) (10)

where Qi represents the total inversion charge (Qif + Qib), and
y represents the direction along the channel from the source
(y = 0) to the drain (y = L).

The main objective of charge linearization is to find closed-
form solutions for the terminal charge integrals. In bulk

MOSFET, the bulk charge is linearized as a function of the
surface potential. For undoped (or lightly doped) body sym-
metric double-gate (SDG) MOSFET, in the absence of bulk
charges, the inversion charge is linearized with respect to the
coupling factor G (note that C1 in [10] and θ in [11] could be
shown to be equivalent to G). This step is done so, because
in the case of SDG, where G is always negative, Qi could
be expressed as a sole function of G, and as G → 0, Qi → 0.
In the case of IDG, the challenge is twofold: 1) G could be
both positive and negative, G = 0 denotes the crossover point
between the trigonometric and the hyperbolic modes [1], and
thus, the inversion charge might not be zero at this point and
2) the inversion charges cannot be expressed as a function of a
single variable.

Even if, somehow, the inversion charge can be linearized
against some variable, there are other issues involved. In
charge-based compact models, charge linearization is used to
develop the so-called “core model” in such a manner that the
drain current could be approximated as a quadratic function of
Qis and Qid [for example, see [12] for the normalized format
id ≈ (−q2

i + 2qi)|qid
qis

]. Such an expression is invertible for a
particular Qi(V ) and is thus useful for obtaining the closed-
form expression of Qi(y) in terms of Qis and Qid, which leads
to an explicit expression for terminal charge integrals. However,
this technique is not suitable for IDG MOSFET because of
the following reasons. From the terminal charge integrals, it is
clear that, apart from the total drain current model (Id), there
is a similar closed-form model for Idf and Idb for obtaining
analytical expressions for Qif(y) and Qib(y). Unfortunately,
the integral in the expression of the Idf and Idb is not solvable
(the terms cancel out when Idf and Idb are added for finding
Id). If the integral and G terms are dropped from all drain
current models, the desired expression is obtained. As shown
in Fig. 1, although this approximation is reasonable for the
total drain current, it does not even match the trends of Idf and
Idb. It was observed that, if the integrals are solved and Idf

and Idb are expressed as a general expression for a second-
degree polynomial of Qifs(d) and Qibs(d) such as p20Q

2
if +

p02Q
2
ib + p11QifQib + p10Qif + p01Qib + p00, it may be pos-

sible to get a good match with exact Idf and Idb, provided that
the coefficient of the polynomials becomes a function of applied
biases but does not solve the purpose for obtaining a closed-
form expression for Qif(y) and Qib(y). Note that the surface-
potential-based model [11] takes a slightly different approach
(here, one seeks an explicit formulation of ψf(b)(y) from a



48 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 1, JANUARY 2011

similar quadratic equation); however, one can see in (4) and
(5) that the inversion charge and the surface potential are just
interchangeable parameters. Therefore, we can conclude that
the conventional charge linearization techniques might not be
suitable for modeling terminal charges of the IDG MOSFETs.

III. PROPOSED CHARGE LINEARIZATION SCHEME

In this paper, we propose to linearize the front, back, and total
inversion charge as a function of y. For brevity, we introduce
a parameter Q̃ that represents Qif , Qib, or Qi. The proposed
linearization process involves three steps. In the first step, Q̃ is
linearized against channel potential V around V = Vs as

Q̃(V ) = Q̃s +
∂Q̃s

∂Vs
(V − Vs). (11)

Note that (∂Qifs/∂Vs)=−Coxf(∂ψfs/∂Vs), (∂Qibs/∂Vs) =
−Coxb(∂ψbs/∂Vs), and (∂Qi/∂Vs) = (∂Qifs/∂Vs) +
(∂Qibs/∂Vs). The expressions for ∂ψf(b)s/∂Vs could be
obtained from the IVEs reported in [1] and are given in (12) and
(13), with λ3 = Beβ(−Vs+ψfs), λ1 =

√
λ3

√
1 ∓ (λ3Gs/B),

and λ2 = λ
3/2
3

√
1 ∓ (λ3Gs/B). Here, the negative and

positive signs represent trigonometric and hyperbolic solutions,
respectively. Due to the complicated nature of the IVEs, it is
difficult to accurately obtain (12) and (13) by hand calculations.
We use Mathematica [15] to obtain the following formulations:
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Fig. 2. Back-gate inversion charge profile along the channel for the same
device parameter as in Fig. 1 with bias conditions: Vgsf = 1 V, Vgsb = 0.6 V,
and Vds = 1 V. Here, an “o” symbol represents the numerical result, a black
line represents (15), a green line represents cubic approximation, and a red line
represents the spline approximation.

∓4C2
oxf

∂ψfs

∂Vs
(Vgsf−ψfs)

+2β

(
ε2si(Gs∓λ3)

(
∂ψfs

∂Vs
−1

)

∓C2
oxfλ1tsi

∂ψfs

∂Vs

×(Vgsf−ψfs)
)}

cot(h)θ
]

÷
[
2βε2siGsλ1

]
. (13)

In the second step, the channel potential V is linearized as a
function of y around y = 0 as follows:

V = Vs +

(
∂V

∂y

∣∣∣∣
y=0

)
y = Vs +

Id

μWQis
y. (14)

Note that (11) and (14) are valid from y = 0 to the point of
pinchoff. Using (11)–(14), the inversion charge density Q̃ can
finally be linearized as function of y as

Q̃(y) =
∂Q̃s

∂Vs

Id

μWQis
y + Q̃s = ñqy + Q̃s. (15)

Here, ñq is the slope factor. It is found that (15) is valid, at
least for y ≤ L/2, for any practical bias conditions.

IV. MODELING OF THE TERMINAL CHARGE

Using the aforementioned charge linearization technique, we
propose two different models for the terminal charges.

A. Model 1

A typical inversion charge profile along the channel is shown
in Fig. 2. In model 1, we approximate Q̃ as a cubic polyno-
mial of ξ = y/L, e.g., Q̃ = Ãξ3 + B̃ξ2 + C̃ξ + D̃. The four
polynomial coefficients Ã, B̃, C̃, and D̃ are calculated from the
following four conditions:

Q̃(ξ = 0) = Q̃s = D̃ (16)
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∂Q̃(y)
∂ξ

∣∣∣∣∣
ξ=0

= ñq = C̃ (17)

Q̃(ξ = 1) = Q̃d = Ã + B̃ + C̃ + D̃ (18)

Q̃

(
ξ =

1
2

)
= Q̃m =

Ã

8
+

B̃

4
+

C̃

2
+ D̃. (19)

Q̃m is calculated using (15). The aforementioned four sets of
equations (16)–(19) are solved to get the four coefficients, and
using (7)–(10), the terminal charges are given by the following
closed-form expressions:

Qgf =WL

[
Aif

4
+

Bif

3
+

Cif

2
+ Dif

]
(20)

Qgb =WL

[
Aib

4
+

Bib

3
+

Cib

2
+ Dib

]
(21)

Qd = − WL

[
Ai

5
+

Bi

4
+

Ci

3
+

Di

2

]
. (22)

Therefore, model 1 is a full analytic function of Q̃s and Q̃d,
both of which are determined by solving the IVEs at the source
and drain ends.

B. Model 2

In this technique, we seminumerically solve the terminal
charge integrals. Initially, an approximation of the charge pro-
file by the quadratic spline interpolation method is done, and
then the resulting polynomial is integrated to obtain the terminal
charges. The total domain (0 ≤ ξ ≤ 1) is divided into four
regions (i.e., three collocation points at ξ2, ξ3 and ξ4, with
ξ1 = 0 and ξ5 = 1 as shown in Fig. 2), and in each region,
an approximation of the inversion charge as Q̃(ξ) = Ã2

kξ2 +
B̃kξ + C̃k is carried out, where k = 1, 2, 3 or 4. To keep the
continuity, at each collocation point, the magnitude and the
first derivative of the right and left segments have to be equal.
Following this approach, the 12 polynomial coefficients are
determined by solving the following 12 boundary conditions:

Ã1ξ
2
2 + B̃1ξ2 + C̃1 = Q̃(ξ = ξ2) = Q̃2 (23)

B̃1 =
∂Q̃(ξ)

∂ξ

∣∣∣∣∣
ξ=ξ1

= ñq (24)

C̃1 = Q̃(ξ = ξ1) = Q̃s (25)

Ã2ξ
2
3 + B̃2ξ3 + C̃2 = Q̃(ξ = ξ3) = Q̃3 (26)

Ã3ξ
2
4 + B̃3ξ4 + C̃3 = Q̃(ξ = ξ4) = Q̃4 (27)

Ã4 + B̃4 + C̃4 = Q̃(ξ = 1) = Q̃d (28)

Ã1ξ
2
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2
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Ã2ξ
2
3 + B̃2ξ3 + C̃2 = Ã3ξ

2
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Ã3ξ
2
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2
4 + B̃4ξ4 + C̃4 (31)

2Ã1ξ2 + B̃1 = 2Ã2ξ2 + B̃2 (32)

2Ã2ξ3 + B̃2 = 2Ã3ξ3 + B̃3 (33)

2Ã3ξ4 + B̃3 = 2Ã4ξ4 + B̃4. (34)

Now, the integrals for the terminal charges (7)–(9) can be
evaluated as
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The efficiency of this method depends on the optimization
of choices for the collocation points. The space variable y
is related to the channel potential V with the following non-
invertable formulation:

y(V ) =
μW

Id

V∫
Vs

Qi(V )dV =
Id|Vd=V

Id|Vd=Vd

. (38)

Note that (near) exact values of Q̃2, Q̃3, and Q̃4 are needed,
and the calculation of Q̃ at a particular y in a straightfor-
ward method is not feasible. We chose ξ2 = 1/2.5 so that
Q̃2 could be calculated using (15). Other two collocation
points are calculated using V = (V0 + 0.8 × VP )/3 and V =
0.8 × VP by solving the IVEs and using (38). Here, V0 =
(Id/Qis)/2.5 + Vs corresponds to ξ2, and VP is the pinchoff
voltage and is calculated by equating (11) with Qid as VP =
(Qis − Qid)/(∂Qis/∂Vs) + Vs. These points are obtained by
heuristic for the best match. However, although we need three
collocation points to solve the terminal charge integrals, the
proposed charge linearization technique enables solving of the
IVEs only for two (ξ3 and ξ4). In other words, in model 2,
we need to solve the IVEs two more times, aside from the
source and drain ends of the channel. It is imperative that model
accuracy increases with the number of collocation points, at the
cost of computational efficiency.

V. SMALL SIGNAL MODEL

Although it is not mandatory, from the designer’s point of
view, it is desirable to have an analytical formulation of small-
signal parameters in a compact model. The formulation for
the transconductance and conductance of IDG MOSFET is
available in [2] and [16]. The closed-form expression for trans-
capacitances in terms of terminal charges and conductances for
tied DG MOSFETs are derived in [2]. Changing the domain
of the terminal charge integrals from y to V and applying
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Fig. 3. Different transcapacitance characteristics obtained from model 2 (line) and the exact value (circle) for the device parameters toxf = 1 nm, toxb = 3 nm,
and tsi = 20 nm. In this figure, we have also shown the results obtained from the TCAD simulation [17] for a few characteristics, which are represented by the
cross symbols.

the Leibnitz theorem, similar expressions for transcapacitances
with respect to the source, and drain terminals could be ob-
tained for IDG MOSFETs. However, it is difficult to get trans-
capacitance expressions with respect to gate terminals using
the same technique, because we have two independent gates.
Here, we have calculated the transcapacitance by numerically
differentiating the terminal charges with respect to the terminal
voltages according to the definition given in [2].

VI. RESULTS AND DISCUSSIONS

We validate our model against the exact result obtained by
solving the terminal charge integrals in the trapezoidal rule
and also with the data obtained from the technology computer-
aided design (TCAD) simulation [17]. A constant electron
mobility of 300 cm2/V-s is used. Although we have explained
our modeling technique for Vgsf ≥ Vgsb, here, we demonstrate
our complete model, which is valid for all operating regimes.
Fig. 3 shows the behavior of nine independent transcapaci-
tances (source reference case) for different bias conditions
using model 2, and an excellent agreement with the exact

result is observed. One can also observe that the proposed
model is continuous between Vgsf ≥ Vgsb and Vgsf < Vgsb bias
conditions. In Fig. 4, we compare model 1 with model 2 and
observe that both models match when the Poisson solution
at the source end is hyperbolic in nature; however, model 1
becomes inaccurate in many cases when the Poisson solution at
the source end is trigonometric in nature. The reasoning behind
this observation is given as follows. When the source end is
in hyperbolic mode (then the drain end is also in hyperbolic
mode), the signs (polarity) for Qif , Qib, and Qi do not change
from y = 0 to L. However, when the source end is in trigono-
metric mode, the drain end could be either in trigonometric
(for low Vd) or hyperbolic (for moderately high Vd), mode as
explained in [1, Fig. 1(b)]. If there exists any potential minima
within the body at y = 0 and simultaneously the drain end is
in hyperbolic mode, for the Vgsf > Vgsb case, the signs for Qif

and Qi do not change for any value of y, but the sign for Qib

becomes opposite at y = 0 and L (the scenario is reversed for
the Vgsf < Vgsb case). When the sign of Qib(y) changes along
the channel, we found that one needs a near-exact formulation
of Q̃(y) to accurately predict the transcapacitance (particularly
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Fig. 4. Comparison of models 1 (line) and 2 (symbol) for the same device
parameters as in Fig. 1. The “red” and “blue” colors represent that the Poisson
solution at y = 0 is hyperbolic and trigonometric, respectively.

Fig. 5. Validation of models 1 (dotted line) and 2 (solid line) for tied double-
gate transistors against the exact result (symbol). The device parameters are:
toxf = 1.5 nm, toxb = 1.5 nm, tsi = 10 nm, and Δφf = Δφb = 0 for SDG
and Δφf = −0.56 V and Δφb = 0.56 V for ADG at Vds = 2 V.

when the Cgfgb or Cgbgf characteristics take N shape). As
shown in Fig. 4, although the difference between both the
models (they are different mainly at the drain side) are very
small, model 1 cannot accurately predict the transcapacitance
when the source end is in trigonometric mode. For the same
reason, we believe that it is extremely difficult to develop a
fully analytic terminal charge model for IDG MOSFETs, which
would be accurate for all regimes of operations. In Fig. 5,
we compare the performance of both models for tided double
gate (symmetric and asymmetric) devices, and as we see, both
models accurately predict the behavior of the SDG device, but
they differ when asymmetry arises. Nevertheless, model 1 is
useful if the designer wishes to strictly operate the device in the
source end in hyperbolic mode regime for any specific reason
(e.g., ultralow-power applications).

VII. CONCLUSION

We have proposed a new charge linearization technique for
IDG MOSFETs to model the terminal charges and transcapaci-
tances. We report two different types of modeling techniques.
In the first type, the terminal charges are expressed as closed-
form functions of the source- and drain-end inversion charge
densities and found it to be accurate only when the potential
distribution at the source end of the channel is hyperbolic
in nature. The second type, which is found to be accurate
in all regimes of operations, is based on the quadratic spline
collocation technique and requires the IVEs to be solved two
more times, apart from the source and the drain ends. All
models are validated against numerical device simulators.
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