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Abstract. In this paper, we propose a novel and efficient algorithm for modelling
sub-65 nm clock interconnect-networks in the presence of process variation.
We develop a method for delay analysis of interconnects considering the impact of
Gaussian metal process variations. The resistance and capacitance of a distributed
RC line are expressed as correlated Gaussian random variables which are then
used to compute the standard deviation of delay Probability Distribution Function
(PDF) at all nodes in the interconnect network. Main objective is to find delay PDF
at a cheaper cost. Convergence of this approach is in probability distribution but
not in mean of delay. We validate our approach against SPICE based Monte Carlo
simulations while the current method entails significantly lower computational
cost.

Keywords. Statistical timing analysis; VLSI clock interconnects; delay vari-
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1. Introduction

Interconnects constitute a dominant source of circuit delay for modern chip designs. As the
CMOS technology scales further, chip interconnects with lower width-to-height aspect ratio
are dominating the physical design. The variations of the critical dimensions in modern VLSI
technologies lead to variability in interconnect performance that must be fully accounted in
timing verification in sub-65 nm technology nodes. Variations in the line width affect the
resistance and the inter-layer capacitance. Variations in the inter wire spacing may cause
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a significant degradation in the signal integrity. Layout pattern dependent variations within
the inter-layer oxide and the chip multiprocessing process also have a significant impact
on the interconnect parasitics. These disparate sources of variations in the VLSI CMOS
fabrication process lead to both random and systematic effects on circuit performance (Nassif
2001; Boning & Nassif). All of these make it increasingly difficult to accurately predict
the performance of a circuit at the design stage, which ultimately translates to a parametric
yield loss (Vishweswariah 2003). Thus, determining an accurate statistical description of the
interconnect response is critical for designers.

Traditional static timing methodology is corner based. This requires an exponential number
of timing runs as the number of correlated and significant sources of variation increases.
Further timing verification can become pessimistic as is the nature of corner based methods
that seek to deliver bounds on the arrival times. But it is intractable to analyse all possible
corners, the missing corners may lead to failures detected after the manufacturing of the chip.
The solution of this problem is statistical static timing analysis. It will reduce pessimism,
improve verification time and provide means for increasing parametric yield.

In the presence of significant variations, interconnect model parameters such as wire
resistance, capacitance, etc., need to be modelled as random variables or as spatial random
processes. The conventional corner-based analysis is inadequate, and simulations based on
sampling (Monte Carlo) require long computation times due to the large number of para-
meters and due to the need for generating large number of random variates corresponding to
each parameter.

Therefore, it is required that an interconnect analysis framework be developed that considers
random variations in physical dimensions and estimates the probability distribution function
(PDF) of the interconnect delay. However, handling inter-die/intra-die variations and assessing
their impacts on circuit performance can dramatically increase the cost of the statistical
timing analysis. This underscores the need for fast and efficient methods that reduce the
computational cost but with minimum error in computing the statistical description of the
response (Agarwal et al 2003).

In this paper, a practical interconnect delay variation analysis technique is developed to
facilitate the efficient computation of PDF of clock interconnect delay for Statistical Timing
Analysis. The interconnect delay is a function of the process variables, which are typically
modelled as Gaussian random variables. The ITRS (International Technology Road map
for Semiconductors) (Interconnect 2006) suggests that total Metal-1 resistance variability is
28% in 65 nm node and capacitance variability is 20%. We assume that the resistance and
capacitance of distributed RC lines to be correlated Gaussian random variables having the
variability as given in ITRS. Based on this, the new algorithm proposed here reduces the overall
network to small manageable RC distributed lines, which, in turn needs smaller computational
effort. The new reduction algorithm proposed here provides significant computational speed
improvement of up to four orders of magnitude over the Monte Carlo SPICE simulations.

2. Algorithm

The reduction algorithm takes advantage of quickly solving in a straight forward manner a
small segment of interconnect for its delay variability. The algorithm computes reasonably
accurate delay variability at any node in much less time compared to solving the entire
interconnect network repeatedly for delay variability in a Monte Carlo scheme. The algorithm
applies to all short and medium length interconnects.
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Figure 1a shows a typical interconnect network containing four internal nodes and five
output nodes terminated with different capacitive loads. Here each interconnect segment is
considered as a distributed RC line. Depending on the way process variability affects the vari-
ability of resistance and capacitance of the interconnect, we have to choose the granularity
(i.e. the number of simplified segments) in the distributed RC line. The granularity of the RC
line network must be determined empirically from process variability parameters so that the
computation can capture the delay variability adequately. For example, based on ITRS data
for 65 nm, we choose 10 µm length line segments as single wire segments i.e. every 10 µm
segment is treated as a single RC element where R is a Gaussian random variable represent-
ing bulk resistance of the segment and C is another Gaussian random variable representing
the capacitance of that segment. The resistance random variable and corresponding capaci-
tance random variable are taken to have a correlation coefficient of 0·8 according to (Usha
Narasimha et al 2006). Normally we can solve this kind of network in Monte Carlo fashion
and get the delay variability at each node, but this is computationally expensive. We reduce
this cost by collapsing the segments into equivalent RC loads for delay variability calculation
purpose.

2.1 Reduction procedure

Initially all the leaf segments (i.e. segments which have no further branches) are identified
and modified (collapsed) into equivalent RC loads so that these loads can preserve the delay
properties of the network. Figure 2 shows different types of loads namely L-type load, 3-stage
π -load and 100-stage π -load. If there are more than one leaf segments at a node, they are
merged. This merging is not just simple calculation of equivalent resistances and capacitances
for a set of parallel resistances and capacitances, as it does not take the electrical properties
into account. One can assume two segments to be parallel (OR short circuit at their end points)
only when the voltage at their end points is the same. We use delay instead of voltage to
decide on which segments are in parallel or which two nodes are to be short-circuited. So the
equivalent value of resistances and capacitances that are in between the nodes whose delays
are the same are calculated. Figure 3 explains this procedure. There are two non-uniform
distributed RC lines in the figure each containing N (3 for 3-stage π -load and 100 for 100-
stage π -load) segments. We can calculate the delay at each of the N nodes approximately
using the simple Elmore delay metric for both the lines. If the two lines are identical, then the
resultant line will have half the resistance and double the capacitance of individual lines in
each segment. Otherwise we look for the node (say N1) in the line having the largest delay, at
which the delay is same as the output node delay of the line having the smallest delay. N1 and
the output node of the line having the smallest delay are shorted as shown in figure 3. In the
same manner we short the nodes having the same delay from node N1 onwards. Hence as
shown in figure 3, the nodes from the two lines are selectively shorted and merged to form a
single RC line. However, some portion of the line will remain unmerged. After this step the
reduced interconnect network looks like the one in figure 1b.

We continue the collapsing on the newly formed leaf branches. And thus, figure 1b reduces
to figure 1c. During this step a distributed line with output load is collapsed into its equivalent
load and then merged with another load according to the Elmore delays as explained earlier.
This collapsing is done by taking all segment lengths into consideration i.e. the number of
RC elements allotted in equivalent load for a segment are in proportional to the segment
length. These steps are further executed till the reduced interconnect network contains a single
distributed line with its output loaded as shown in figure 1e.
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Figure 1. (a) Original inter-
connect network, (b) to (e) are
reduced networks following the
reduction algorithm. In figure (b)
the segment N2 − o/p0 is col-
lapsed into an equivalent load.
Similarly, the segments N3 −
o/p3 and N1 − o/p1 are col-
lapsed into their equivalent loads.
At node 4, two leaf segments
N4−o/p4 andN4−o/p2 are col-
lapsed individually and merged
using algorithm proposed. In fig-
ure (c) the segment N3–N4 is
collapsed and merged with load
already existed at node N3. In fig-
ure (d) the segment N2–N3 is
collapsed and merged with load
already existed at node N2. In
figure (e) the segment N1–N2 is
collapsed and merged with load
already existed at node N1.

Figure 2. Different types of loads
for mocking merged part of net-
work, (a) L-type load, (b) 3-stage
π load and (c) 100-stage π load.
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Figure 3. Merging two loads;
for convenience 10 node RC lines
are taken. Dashed lines indicate
shorting the nodes of two RC
lines. The part not in parallel
remains unchanged in the resul-
tant RC line.

Table 1 gives a quantitative example of how accurately this reduction algorithm using
3-stage π -load preserves the delays at the internal nodes of the interconnect network shown
in figure 1a. As shown in the table 1, there is some error in the delay of the nodes as predicted
by the reduced networks. Node N1 has the largest error. However, this is acceptable as we are
seeking convergence of the algorithm in variance only for variation analysis purpose. Thus
the reduction algorithm has successfully reduced the original interconnect network into a very
simple distributed line with equivalent load.

2.2 Variation models

The reduction procedure is conducted by considering mean values for resistances and capaci-
tances. In this subsection, we consider the effect of their variability on delays. Two models

Table 1. Comparison of delays at different nodes among
different networks.

Delay (ns) N1 N2 N3 N4

Figure (1a) 0·919 5·23 6·01 6·36
Figure (1b) 0·916 5·26 6·03 6·38
Figure (1c) 0·916 5·26 6·03
Figure (1d) 0·919 5·24
Figure (1e) 1·4

Table 2. Comparison of delay variability results (standard
deviation of delay) from Monte Carlo simulations and our
algorithm.

Node Monte carlo Our model % error

o/p0 1·202e − 12 9·304e − 13 −22·62
o/p1 4·007e − 13 5·005e − 13 +19·93
o/p2 1·399e − 12 1·571e − 12 +12·16
o/p3 1·351e − 12 1·063e − 12 −21·34
o/p4 1·407e − 12 1·474e − 12 +04·72
N1 3·994e − 13 4·151e − 13 +03·93
N2 1·161e − 12 8·250e − 13 −28·94
N3 1·311e − 12 9·201e − 13 −29·86
N4 1·408e − 12 1·372e − 12 −02·61
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Figure 4. (a) Model-1,
(b) model-2; System here is RC
distributed line containing the
variability. But load is just an
equivalent of rest of the deter-
ministic network that has been
collapsed and merged.

shown in figure 4 are used for this purpose. Model-1 gives the delay variability of a uniformly
distributed RC line with load. Here the distributed RC line’s resistance and capacitance
are correlated Gaussian random variables as said earlier. In Model-1 the load represents all
the branches of the network collapsed with mean values of resistances and capacitances.
As shown in figure 4a, for a deterministic voltage step input, the distributed RC random
line’s output voltage across the load rises with a delay that has a Gaussian distribution. Delay
and voltage are positively correlated with respect to their voltage slope. This is in agreement
with (Xiaoji Ye 2007). The Model-1 gives the standard deviation of the delay’s Gaussian
distribution.

Model-2 is same as the Model-1 except that in this case the input also has got variability.
Input voltage step rises at different times with a certain Gaussian variability. Model-2 also
gives the standard deviation of the delay of the output voltage for similar system as in Model-1.

There are different ways to implement Model-1. It can be implemented as pre-calculated
model for L-type load and 3-stage π -load. This model is a function of deterministic resistance
in the load, R; deterministic capacitance in the load, C; and the random resistance per unit
length and the random capacitance per unit length of distributed RC line and the length of the
distributed RC line. Alternatively, it can be implemented at run time for a 100-stage π -load,
i.e. simulating the distributed RC random line with load for calculating the standard deviation
of its delay. For Model-2 we consider input step voltage delay variability and internal delay
variability (estimated by Model-1) as separate noise terms introduced in an ideal system. Since
the variability at a node depends on both its predecessor and successor nodes, the internal
delay random variable and input delay random variable in figure 4b are correlated. Moreover,
resistance or capacitance changes caused by process variations are correlated. Assuming the
correlation coefficient between these two terms as ρ, we can predict the total delay variability
at the output of distributed RC random line with load in figure 4b as follows:

Delayoutput = Delayinternal + Delayinput, (1)

σdelay−output =
√

σ 2
delay−internal + σ 2

delay−input + 2ρσdelay−internalσdelay−input. (2)

2.3 Variation analysis

We start the variation analysis by introducing RC variability in the fully reduced network
in figure 1e. The distributed RC line is a line with random variable parameters but the load
(as is assumed in the algorithm) is fixed (deterministic) at the mean values of its parameters.
Using Model-1 we obtain the delay variability at node N1 as σdelay−node N1. This delay has
to be scaled, because the mean delay of node N1 in figure 1e is not equal to the mean delay
of node N1 in figure 1a as given in table 1. In fact, there is a difference in the slope of rising
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voltage at node N1 at half voltage point (V = 0·5 v) between two networks. Voltage at node
N1 in reduced network figure 1e rises slower than the voltage at node N1 in original network
figure 1a. This is due to the sudden increase in capacitance presented by the equivalent load
used at node N1 in reduced network. We know σdelay is inversely proportional to slope of rising
voltage at half voltage point (Xiaoji Ye et al 2007). And the slope is inversely proportional
to the capacitance that is presented by the equivalent load at that node. This is the cause of
the increase in delay. So we scale σdelay−node N1 of the reduced network with respect to the
capacitance ratio (or delay ratio) and obtain an approximate of σdelay−node N1 of the original
network. This calculated standard deviation of node N1 can further be used to estimate delay
variation at successor nodes. After expanding (i.e. opposite to reduction, going backwards)
the load, we come to figure 1d, in which the σdelay−node N1 is already calculated. Model-1 is
run on the segment from node N1 to node N2 with load, by incorporating R, C variability
in the distributed line between node N1 and node N2. Here too, load is deterministic and
is fixed at the mean value of its parameters. This gives σdelay−node N2−internal which should
be scaled as explained previously. Now σdelay−node N2 is obtained from σdelay−node N1 and
σdelay−node N2−internal using the equation 2. This procedure of expanding, using Model-1 to find
the internal variation and using Model-2 to find total variation is continued till the original
interconnect network and the standard deviation of the delay at all nodes is found.

3. Results

We take the original interconnect network shown in figure 1a having 1·5 $/µm and
0·2 f F/µm, which is usual for medium interconnects, and conduct the Monte Carlo analysis
with 1000 iterations. Delay standard deviation is calculated at every node. The same network
is modified using our reduction algorithm and variation analysis is done. These delay vari-
ation results are compared with Monte Carlo analysis results in table 2. Results presented
here are obtained using 3-stage π -load and with ρ of 0·5. The accuracy of delay standard
deviation can be increased by using 100-stage π -load. Because, in the case of 3-stage π -load
the load can not accurately preserve the distributive nature of RC network which is being
merged. A 3-stage π -load presents sudden increase in capacitance and resistance at nodes,
which causes delay to increase. But a 100-stage π -load provides a change in capacitance
and resistance closer to the one that is presented in the original network, even after merging

Table 3. Results with input delay variation of 10−13, caused
by VDD variation.

Node Monte carlo Our model % error

o/p0 1·33e − 12 1·00e − 12 −24·56
o/p1 5·42e − 13 6·40e − 13 +18·12
o/p2 1·53e − 12 1·73e − 12 +13·28
o/p3 1·49e − 12 1·19e − 12 −19·89
o/p4 1·48e − 12 1·55e − 12 +04·67
N1 1·35e − 12 4·84e − 13 +03·20
N2 1·35e − 12 9·82e − 13 −27·23
N3 1·451e − 12 1·07e − 12 −25·76
N4 1·55e − 12 1·51e − 12 −02·61
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the loads. Number of stages in the load can be chosen according to our desired accuracy and
network complexity. In general, the accuracy of the algorithm increases with the number of
stages in the load.

3.1 VDD Variation

An extension of our algorithm incorporates the driving voltage VDD variation. With this the
source point of each wire will also have variability in input delay, which is caused by VDD

variation of the driving CMOS-gate. As our model can calculate the output delay variability
of an RC segment, as a function of input delay variability and RC parasitic variability, we
can reuse our model to include the VDD variation. Here we should note that the change in the
voltage level of the driving cell’s output signal due to the VDD variation does not affect the
way our algorithm works, because the variability at the output node of the RC segment is not
a function of the absolute VDD voltage, rather it is a function of the input delay variation and
the RC parasitic variation. the time constant of the RC chain is independent of the voltage
of its driver. The driving CMOS gate output delay variation caused by its VDD rail variation
comes under device modelling which is outside the scope of the present study. The results
with input delay variation of 10−13, caused by VDD variation is shown in table 3.

4. Discussion

4.1 Model-1

The reliability of Model-1 i.e. representing the network with equivalent load accurately
depends on two factors. Accuracy of equivalent loads to represent the original network
increases with number of segments used in that equivalent load. Secondly, this accuracy
inevitably depends on the complexity of the interconnect network. Equivalent loads show
excellent tracking of original network for simple and well symmetric interconnect networks
like on-chip clock tree networks, etc. And their ability to mock original network degrades as
the asymmetric nature of the interconnect network grows.

Figure 5a shows a common H-tree used for skew free clock distribution which is simple
and symmetric in nature. This network is fully reduced using our algorithm and accuracy of
different loads are given in figure 6 and table 4. Though our aim in this paper is to estimate
delay variability, it is good enough if the original network and fully reduced networks show
same voltage response. We have chosen slope at 50% voltage point along with nominal
50% voltage delay for comparison, because delay variability depends on slope of the voltage
waveform at 50% voltage point (Xiaoji Ye et al 2007). Comparison of voltage at node N1 is the
worst-case among all nodes. The results demonstrate an excellent match of voltage response
between H-tree interconnect network figure 5a and its fully reduced network with 100-stage
π -load though 3-stage π -load and even 6-stage π -load fail to track the original interconnect
network’s voltage response accurately. This can be easily understood because merging all the
nodes having same voltage response in H-tree figure 5a looks like a fully reduced network
with ideal load figure 5b. This ideal load is a cascade of two different uniformly distributed RC
lines. A N -stage π -load is nothing but discretization of this ideal load where the discretization
causes the only possible error. In simple and symmetric interconnect networks like H-tree,
etc., this ideal load is just a cascade of uniformly distributed RC lines, thus allowing large-
stage loads to track original interconnect network closely.

In case of complex or asymmetric interconnect networks like the original interconnect
network shown in figure 1a, there are other sources of errors along with discretization. Using
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Figure 5. (a) A typical symmet-
ric H-tree type interconnect net-
work, (b) Fully reduced network
of (a) with ideal load. Note: R,C
are per unit length values of dis-
tributed RC lines of H-tree.

Figure 6. Comparison of differ-
ent types of loads for their accu-
racy to preserve the delay at node
N1 in a symmetric interconnect
network like figure 5a.

Table 4. Comparison of 50% delay and slope at 50% voltage point of voltage wave-
form at node N1 in original symmetric H-tree network figure 5a to its fully reduced
network with different equivalent loads.

Network 50% delay Slope at 50%

H-tree figure 5a 1·18805e − 10 s 134·53 MV/s
Fully reduced NW (100-stage π -load) 1·18822e − 9 s 134·6 MV/s
Fully reduced NW (6-stage π -load) 2·98e − 9 s 81·8 MV/s
Fully reduced NW (3-stage π -load) 2·97523e − 9 s 81·6 MV/s
Fully reduced NW (L-type load) 2·6068e − 10 s 75·9 MV/s
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Figure 7. Comparison of differ-
ent types of loads for their accu-
racy to preserve the delay at node
N1 in an asymmetric interconnect
network like figure 1a.

Elmore delay for identifying nodes having equal voltage response causes some error. It is not
guaranteed that nodes which are being merged have absolutely same delay. In practice, this
Elmore delay turns out to be crude approximation, as voltage need not be same throughout the
full transition time for the two nodes which are deemed to behave electrically identical. So the
error due to this approximation is purely dependent on complexity of interconnect network
under consideration. Figure 7 and table 5 show how reduced interconnect network figure 1e
having different loads approximate a complex original interconnect network figure 1a. Surely
asymmetric or complex networks need more number of stages in the load compared to simple
or symmetric networks to improve accuracy. Implementing larger number of stages in the
equivalent load does produce accurate results but at the cost of more system memory and
computational capacity.

4.2 Model-2

After accurately representing the original interconnect network by using equivalent load,
it becomes computationally efficient to get the delay variability at all internal loads using
Model-2. The Model-2 relies on the consideration that the output delay random variable of a
random distributed RC line is summation of the input delay random variable and RC line’s
internal delay random variable. Here correlation between the input delay random variable and
the internal delay random variable should be considered for accurate estimation of statistical
properties of output delay random variable. Calculating this correlation coefficient numeri-
cally is computationally expensive and it can be estimated from the manufacturing variability
data. The optimistic assumption of the correlation coefficient ρ to be 0·5 may cause some

Table 5. Comparison of 50% delay and slope at 50% voltage point of voltage
waveform at node N1 in original complex network figure 1a to its fully
reduced network figure 1e with different equivalent loads.

Network 50% delay Slope at 50%

Figure 1a 9·1934e − 10 s 142·5 MV/s
Figure 1e with 100-stage π -load 1·06507e − 9 s 94·5 MV/s
Figure 1e with 6-stage π -load 1·2982e − 9 s 77·34 MV/s
Figure 1e with 3-stage π -load 1·40397e − 9 s 78·18 MV/s
Figure 1e with L-type load 2·0445e − 10 s 74·4 MV/s
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error in the output delay variability, but it is acceptable in statistical timing optimization con-
sidering the cost benefits the algorithm provides.

5. Computational efficiency

The major advantage of our reduction algorithm is its computational efficiency compared to
the Monte Carlo technique. In case of the reduction algorithm, the network that is solved is
simple and also is smaller in size. So simulating this kind of interconnect is much quicker
as outputs reach half voltage point faster and we don’t need to simulate further beyond this
point. Whereas a single simulation in Monte Carlo simulates the entire interconnect network
at once and we need to continue this simulation till the longest delay node voltage reaches half
voltage point. This enormously increases the required computing effort considering the fact
that procedures such as matrix inversion, etc. are very expensive as the number of elements
increase.

Usual computational cost that incurs in a 1000 iteration Monte Carlo simulation is 1000 ∗
O(Nx

total), whereNtotal is the number of RC elements in the entire network.x is around 4 and it is
high because it also includes the voltage delay dependency on Ntotal along with spacial matrix
computational non linearity. The computational cost for our reduction algorithm is given as
1000∗O(Nx

segment)∗S+GT +LM ∗S, where Nsegment is number of RC elements in the single
segment, S is the total number of segments in entire network, GT is cost for graph traversal
which is a function of S, LM is cost for load merging which is a linear function of Nsegment.
Significant computational cost improvement is expected from our reduction algorithm over
Monte Carlo technique because both the ratio Ntotal/Nsegment and x are high in practice making
(Ntotal/Nsegment)

x a very large quantity.
On the same computer, a single iteration for Monte Carlo took 1195 sec, where as it took

0·035 sec for calculating the standard deviation with Model-1 (with 3-stage π -load) which is
computationally the most expensive model in our reduction algorithm. Together with Model-1
we have to use graph traversal techniques and load merging which are relatively inexpensive.
But the cost grows nonlinearly for Monte Carlo simulations with number of elements. Overall,
our algorithm gives a speed-up advantage of the order of 104 compared to the usual Monte
Carlo technique even with accurate 100-stage π -load.

6. Conclusion

We proposed a novel scheme for estimating the performance of clock interconnects in the
presence of process variations. The variations are modelled as random variables of resistance
and capacitance. We showed how the stochastic response of the interconnect network can
be efficiently computed by our reduction algorithm. It also shows a weak convergence in
variance to the actual estimates is sufficient and leads to inexpensive but reasonably accurate
algorithm. We applied our algorithm on a typical interconnect network and the comparison
of our results using the reduction algorithm against the classical Monte Carlo-based circuit
simulations demonstrates a good match. Our algorithm provides a significant speed-up over
Monte Carlo simulations. As the algorithm better suites for symmetric interconnects, we can
use this for clock tree planning and also for early timing of asymmetric networks where
accuracy is not of much concern.
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