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Abstract
In this paper, we address a physics-based closed-form analytical model of flexural
phonon-dependent diffusive thermal conductivity (κ) of suspended rectangular single layer
graphene sheet. A quadratic dependence of the out-of-plane phonon frequency, generally
called flexural phonons, on the phonon wave vector has been taken into account to analyze the
behavior of κ at lower temperatures. Such a dependence has further been used for the
determination of second-order three-phonon Umklapp and isotopic scatterings. We find that
these behaviors in our model are best explained through the upper limit of Debye cut-off
frequency in the second-order three-phonon Umklapp scattering of the long phonon waves that
actually remove the thermal conductivity singularity by contributing a constant scattering rate
at low frequencies and note that the out-of-plane Gruneisen parameter for these modes need
not be too high. Using this, we clearly demonstrate that κ follows a T 1.5 and T −2 law at lower
and higher temperatures in the absence of isotopes, respectively. However in their presence,
the behavior of κ sharply deviates from the T −2 law at higher temperatures. The present
geometry-dependent model of κ is found to possess an excellent match with various
experimental data over a wide range of temperatures which can be put forward for efficient
electro-thermal analyses of encased/supported graphene.

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene has emerged as a potential candidate for the next
generation interconnects [1] and heat spreaders in integrated
circuits (ICs) through its reportedly high thermal conductivity
(κ) over conventional copper and aluminum [2]. In recent
years, there have been a number of experiments on determining
κ of single and multi-layers of both suspended [3–7] and
on-substrate/encased graphene sheets and ribbons [8–11]
over a wide range of temperatures. The outcome of these
investigations was reported at room temperature thermal
conductivity ranging from 2000 to 7000 W m−1 K−1 for
suspended and about 600 W m−1 K−1 for on-substrate/encased
single layer graphene (SLG) [2].

Presently, the realization of such a high thermal
conductivity follows from the following active groups.

According to Balandin’s group [2–4, 11–15], the main
contribution to the graphene κ comes from the in-plane
longitudinal acoustic (LA) and transverse acoustic (TA)
phonons, which are characterized by the high phonon group
velocities and small Gruneisen parameters leading to the large
phonon mean free path (MFP) [2]. Such an analysis follows
from their full in-plane ab initio-based phonon dispersion
relation for both these phonon modes which have been
further evaluated through a number of simulative works using
rigorous molecular dynamics approach, such as the use of the
valance-force-field method [11, 16–18] for the determination
of the exact phonon group velocities and Umklapp scattering
selection rules. It is also stated that the contribution to the
thermal conductivity from the out-of-plane phonon modes is
small because of the large Gruneisen parameter and small
group velocity. However, conversely Mariani and von Oppen
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[19] used the rotational and reflection symmetries on the out-
of-plane phonon branch, generally called flexural phonons,
and later Lindsay et al [20, 21] used a nonlinear iterative
approach to directly solve the linearized phonon Boltzmann’s
transport equation and predicted that the main contribution
to both the suspended and on-substrate graphene κ comes
from the large density of modes of the acoustic flexural
phonon branch (ZA) whose dispersion relation is treated as
nonlinear or rather quadratic in nature. This makes κ to follow
a T 1.5 law variation below room temperature, also exhibited
experimentally elsewhere [7, 22, 23]. However, there is an
obvious inconsistency between the works of Xu et al [22]
and Munoz et al [23]. It should be noted that the results
by Xu et al [22] are most likely due to the low-quality
graphene, which resulted in the low value of κ and specific
T 1.5 temperature dependence. It has been long known for
graphite that grain boundary and point defect scattering result
in such dependences. The experimental works by Munoz et al
[23] as the explanation of T 1.5 dependence deal specifically
with the ballistic phonon transport regime, whereas Xu et al
[22] specifically indicated that they deal with the diffusive
transport regime. The latter was emphasized at the recent
PHONONS 2012 conference [24]. Recently, Ong and Pop [25]
used the reactive empirical bond order potential to consider
C–C bonds for transport in graphene and Lennard-Jones
potential for C–Si and C–O bonds to present the couplings
with the surroundings for the determination of the heat flow
mechanism and suggested that the inclusion of these modes
is inevitable in order to explain the thermal conductivity of
suspended as well as supported SLG, where these ZA modes
are usually damped due to leakage through the substrate.

Hence we see from the above facts that it is still not
clear about the role of the ZA phonon modes in order to
explain the graphene thermal conductivity. Thus, to visualize
their effect properly, at least for the preliminary step for the
modeling approach, one should take into account the ZA
phonon nonlinear dispersion relation for the evaluation of
these phonon group velocities and thus its incorporation in
Umklapp, and edge-roughness scatterings. The motivation of
this study lies in the fact that although there have been few
aforementioned developments on realizing the effect of the
ZA phonons on graphene κ through various simulative and
experimental works, however there is a deficiency in providing
a physics-based closed-form analytical model for ZA phonon-
dependent κ . This typical physics-based closed-form model
is extremely needed in order to estimate the electro-thermal
performances of these carbon-based materials through CAD
tools, and to assess their reliability when fabricated as on-
substrate or encased interconnects in future ICs [26, 27].

In what follows, we provide a closed-form thermal
conductivity model to estimate the effect of the quadratic
ZA phonon dispersion law on κ by determining the exact
ZA phonon group velocities and use a second-order three-
phonon Umklapp and edge-roughness scatterings and show
that beyond room temperature κ of a pure flake follows a
T −2 law due to the Umklapp scattering. However, below room
temperature, we clearly demonstrate that the trend tends to
experimentally established T 1.5 behavior. We find that these

behaviors in our model are best explained through the upper
limit of Debye cut-off frequency in the Umklapp scattering. We
also find that the out-of-plane Gruneisen parameter for the ZA
phonon dominated thermal conductivity need not be too high in
predicting the magnitude of κ . In addition, we use the isotope
scattering due to the addition of 13C atom isotope on pure 12C
atom [15] which should be taken into account to model the
commonly encountered situation where the difference in the
atomic mass of carbon atoms is introduced unintentionally at
the ends of the SLG under prevailing fabrication methods [28].
The introduction of the isotopes makes the SLG an impure
one and marks wide variation in κ . Our present geometry-
dependent closed-form analytical model of κ of SLG is in
excellent match with the available experimental data over
a wide range of temperatures and can be put forward to
model efficient electro-thermal analyses for graphene-based
interconnects.

2. Model development of thermal conductivity
model for suspended SLG

The ZA phonon mode dominated diffusive thermal
conductivity of an SLG sheet can mathematically be written
as [7]

κ = 1
4πδkBT 2

∫ qmax

q=0

(
∂ωq

∂q

)2 (
!ωq

)2
τq

q e
!ωq
kBT

(
e

!ωq
kBT − 1

)2 dq (1)

in which δ (=0.335 nm) is the layer thickness of an SLG
[20], and ∂ωq/∂q is the ZA phonon velocity, where q is the
ZA phonon vector, τp is the phonon scattering time and !, kB

are the reduced Planck’s constant and Boltzmann’s constant,
respectively. To obtain the out-of-plane phonon velocity, we
use Landau’s approach of Lagrangian for the long wavelength
elastic distortion as [19, 29–31]

L = ρ0

2

(
u̇2 + ḣ2) − 1

2
κ0

(
∇2h

)2 − µu2
i j − 1

2
λu2

kk (2)

in which h(r) and u(r) are the out-of-plane and in-plane
distortions with the strain tensor ui j = 1

2 [∂iu j + ∂ jui +
(∂ih)(∂ jh)]. The parameters λ and µ are the Lame coefficients
(µ ∼ 3λ ∼ 0.09 eV nm−2) and κ0 ( ∼ 1 eV) and ρ0 (=7.6 ×
10−7 Kg m−2) are the bending rigidity and mass density,
respectively, for graphene [30]. Using this, the flexural phonon
dispersion relation can be written as [19, 30]

ωq = αq2 (3)

in which α =
√

κ0
ρ0

≈ 4.6×10−7 m2 s−1 denotes the ZA phonon
diffusion constant. The use of equation (3) into equation (1)
leads to the expression of κ as

κ = k3
BT 2

2πδ!2

∫ ξmax

0
τp

ξ 3 eξ

(
eξ − 1

)2 dξ (4)

in which ξ = !ωq

kBT and ξmax = θD
T , where θD is the Debye

temperature ( ∼1000 K [32]). In order to evaluate equation (4),
we take the effect of edge-roughness scattering and second-
order three-phonon scattering, whose relaxation rates can be
written, respectively, for crystalline boundaries as [33, 34]

1
τE

=
√

π

2F
√
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(
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)
(5)
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as the frequency-dependent edge-roughness scattering rate and

1
τU

= 32
27

|γZA|4
(

kBT
M(∂ωq/∂q)2

)2

ωB (6)

as the frequency-dependent second-order three-phonon
scattering rate where F is the geometric factor, L and W are
the length and width of the suspended SLG, M is the mass
of the carbon atom, ωB is the ZA phonon branch frequency
and |γZA| is the Gruneisen parameter for the ZA mode. To
capture the physical picture for why one should consider
the second-order three-phonon anharmonic scattering process
can be understood from Ziman’s problem of long waves
[35] which states that the thermal conductivity would keep
increasing with the sample’s size even if the low-frequency
phonon MFP is limited by boundary scattering. Queries thus
raised over whether the thermal conductivity of these materials
would saturate with the increase in the length at or above
room temperature were further considered using the phonon
Umklapp process to the second order, which deals with the
TA, ZA and LA mode contributions [36, 37]. It rather appeared
that instead, if the first-order three-phonon processes (three-
phonon process that of a virtual combination of two phonons
of frequencies ω and ω′ into an intermediate one, ωi, and the
splitting of that virtual phonon into two new phonons with
frequencies ω′′ and ω′′′) are considered for these materials,
the thermal conductivity diverges with dimensions, the rate
of variation being dependent on whether the phonon branches
are linear or quadratic. It is rather the second-order three-
phonon processes that actually remove this singularity by
contributing a constant scattering rate at low frequencies
[34]. Besides, the governing three-phonon scattering selection
rules for SLG are as follows: exclusion of all three-
phonon process having an odd number (1 or 3) of flexural
phonons (for example, the following processes cannot occur:
ZA+ZA↔ZA, ZA+TA↔TA, ZA+TA↔LA, ZA+LA↔LA,
ZA+ZA↔ZO and ZA+ZO↔ZO, while ZA+ZA↔TA, LA and
TA, LA↔ZA+ZA are allowed to occur) which stand valid for
all the orders in SLG [20]. In addition to these scatterings, we
also include the isotope-induced scattering where the linear
dimensions of the defects are much smaller than the phonon
wavelength. The effect of this isotope-induced scattering on
κ of suspended SLG has recently been carried out through
experiment and simulation as [15, 11]

1
τI

= 1
4

S0-m
qω2

q(
∂ωq/∂q

) (7)

in which S0 is the cross-sectional area per one atom (= δ×r0),
where r0 = 0.14 nm is the carbon–carbon distance and the
strength of the impurity scattering (-m) can be defined as [15]

-m =
∑

i

fi

[(
1 − Mi

M

)2

+ ε

{
|γZA|

(
1 − Ri

R

)}2
]

, (8)

where fi is the fractional concentration of the impurity atoms,
Mi and Ri are the mass and Pauling ionic radius of the ith
impurity atom and M and R are the average atomic mass and
radius with ε as a phenomenological parameter. It should be
noted that the determination of the specific values of -m is
an extremely challenging work since the isotopic and average

mass can be evaluated while the local displacement (R−Ri) as
a result of the change of atom radius or bond length is usually
unspecified [15]. However, rather to evaluate ε and (R−Ri),
the order of -m can be estimated from the knowledge of
experimental data (as will be discussed later) and is generally
found to be in the range of 10−6–10−3 for low level to high
level of isotope addition [38] for most materials. Furthermore,
for the present case, we have taken the value of ZA phonon
branch frequency ωB to be 28 GHz which is less than that of
two, three and four layers of graphene, respectively [39]. Thus
following Matthiessen’s rule, τp in equation (4) can be written
using equations (5)–(7) as

1
τp

= 1
τE

+ 1
τU

+ 1
τI

. (9)

Using equation (3) equation (9) can further be simplified as
1
τp

= Aξ 1/2 + B
ξ 2

+ Cξ 2 (10)

in which A = 1
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(
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!LW

)1/2
, B = 2

27

(
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)
and

C = S0-m
8α

( kBT
!

)2
. From equation (10), it appears that the

effect of edge-roughness scattering on κ of suspended SLG
mainly dominates at the lower temperature in the absence
of isotopes. This can be understood from the following: in
the absence of isotopic impurity, the two scattering rates,
i.e. edge-roughness and second-order three-phonon Umklapp
scatterings are main. It can be seen from equation (10) that as
temperature decreases, the Umklapp scattering rate goes down
to zero leaving only the edge-roughness scattering to modulate
the thermal conductivity. This leads to the expression of κ at
lower temperature (κlow) in pure SLG as

κlow =
(

FkB

2δ

)(
LW
α

) 1
2
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) 3
2

[∫ θ
T
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2 eξ
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. (11)

The last factor in the parenthesis is generally known as the
Debye integral of order 5/2. It can be shown that in the lower
temperature regime where the upper integral limit tends to
infinity, this 5/2-order Debye integral converges to a numerical
constant value 4.58. However, at the higher temperature
regime, equation (4) converges to

κhigh =
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2πδ

) (
T
!

)2
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, (12)

which can finally be written as
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In the absence of isotope density, equation (13) converges to

κhigh =
(

27
16πδ

) (
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|γZA|2
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!ωB

) (
1

T 2

)
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whereas in the presence of heavy isotope concentration,
equation (13) approaches

κhigh =
(

kBα
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T 2
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in which ζ =
(

27S0-mα
16ωB

) (
kBM
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)2
. While deriving equations

(13)–(15), we have assumed that the function ξ 2eξ/(eξ − 1)2
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Figure 1. κ as a function of temperature for suspended SLG in the
absence of isotopic scattering over a rectangular trench of various
dimensions. The solid and dashed curves correspond to the present
analytical model equation (16). The symbols represent the
experimental data from [3–5] and [8]. The inset exhibits the log plot
of the same.

at high temperatures approaches unity. Thus, the total thermal
conductivity can finally be modeled as

κ−1 = κ−1
low + κ−1

high (16)

for both the aforementioned cases.

3. Model validation

Using equation (16), the variation of κ beyond room
temperature has been exhibited in figure 1 for various flake
dimensions. An excellent match has been exhibited using our
analytical formulation in the absence of isotopes, i.e. using
equation (14) for κhigh. The data points from Balandin et al
[3] and Ghosh et al [4] at room temperature are at 5000 and
4000 W mK−1; however, as the error bars in all graphene
thermal experiments are as high as 30–40%, our modeling
curves are within the accuracy of all the experiments with
all different flake dimensions. The experimental data in [5,
8] were performed at the trench diameter which varies from
approximately 3 to 10 µm, and were also well within our
analytical curves. Furthermore, to correlate our analytical
curves with the data of Balandin et al [3] and Ghosh et al
[4], we have taken the trench length and width to be 3 and
1 µm to map their suspended SLG dimension experiments
which are within 1–5 µm. The inset figure exhibits the effect
of ZA flexural phonon on κ . When plotted as logarithmic axes,
we see by using equations (11) and (13) that indeed the lower
temperature region follows the T 1.5 law dominated by edge-
roughness scattering, while beyond the room temperature,
the trend follows a T −2 law due to the second-order three-
phonon Umklapp process. It should be noted that in our
model development, we have considered the second-order
three-phonon Umklapp processes as suggested by Mingo and
Broido which make κ to follow a T −2 behavior beyond
room temperature, thus essentially removing the singularity
by contributing a constant scattering rate at low frequencies
[34].

Figure 2. κ as a function of temperature for suspended SLG in the
presence of isotopic scattering over a rectangular trench at the lower
temperature regime. The solid curve corresponds to the present
analytical model equation (16). The symbols represent the
experimental data from [22]. The dashed line exhibits an eye guide
to the reader exhibiting the nature of variation.

Figure 2 exhibits the variation of κ with T in the
low temperature zone. The symbols are taken from the
experimental data of Xu et al between 15 and 380 K [22]. In
this case, the suspended trench length is about 3 µm. We find
that our theoretical model is in good agreement with the data
in the specified region. The curve behavior mainly follows the
T3/2 law in the lower temperature region equation (11) (which
dominates below room temperature) exhibiting the effect of
ZA flexural phonons. At this point, it should be noted that
Xu et al [22] mentioned about the trench’s lateral dimensions
to be about W = 0.5 µm; however, from the experimental
data, it appears that κ is one order low if compared with
the aforementioned references. This might be due to the two
reasons that the authors provided [22], that there might be
a substantially stronger effect because of the edge-roughness
scattering and the effect of isotope impurity scattering due to
about 1.1 % of 13C in their experimental data, which we also
feel could be the main reason why κ attains to a much lower
value near the room temperature. It is due to these reasons, we
use equation (13) into equation (16) with -m = 2.4 × 10−3 to
correlate with the experimental data.

Figure 3 exhibits the variation of κ as a function of
temperature with increasing isotope impurity concentration.
The symbols are taken from the recent experimental
observation by Chen et al [15] where the SLG was
suspended over a circular trench of about 2.8 µm diameter.
Using equation (16) by considering equation (13), we
have analytically demonstrated the variation of κ over the
temperature range of 300–650 K. In this case, we use the
flake dimensions to be L = 2 µm and W = 3 µm. A
choice of this dimension is taken to justify the suspended
area match, namely π (2.8/2)2 µm2 ∼ 3 × 2 µm2. Exploiting
these considerations, we find that there is an excellent match
between the observed data and our analytical curves which are
well within the experimental error range. Since the specific
value of -m is rather unspecified, we take -m = 3, 6 and

4
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Figure 3. κ as a function of temperature for suspended SLG in the
presence of isotopic scattering over a rectangular trench at the
higher temperature regime. The solid and dashed curves correspond
to the present analytical model equation (16). The symbols represent
the experimental data from [15].

Figure 4. κ as a function of length for suspended SLG both in the
presence and absence of isotopic scattering at 300 and 500 K.

10 × 10−5 to bring a close match between the experimental
data set and our proposed model for 0.01%, 1.1% and 50%
13C, respectively. It should be noted particularly that Chen
et al [15] did not consider the effect of ZA flexural phonons on
the determination of the thermal conductivity. Instead, they
assumed that the phonon velocity does not modify in the
presence of isotopes. However we feel that the treatment of
ZA flexural phonons should be incorporated for the proper
behavior of κ over the entire temperature range as the quadratic
phonon dispersion relation signifies a higher phonon density
of states [20] which effectively aids increasing the transport of
heat in suspended SLGs. This is suggested from the fact that
the phonon velocity is to be related to the phonon dispersion
relation through a quadratic function (equation (1)). If however
the phonon velocities are termed constant or say an average
value between two extremes, there might appear an error in the
determination of isotopically doped SLG thermal conductivity.

The variation of κ as a function of length has been
demonstrated in figure 4 both for pure and impure SLGs at

Figure 5. κ as a function of strength of the isotopic scattering for
suspended SLG for varying length at room temperature.

300 and 500 K. It appears that κ increases more rapidly at
300 K rather than at 500 K for a width of 1 µm. Increasing
the impurity to 5 × 10−5 cuts down κ to about one half of
its value when intrinsic at 300 K and is almost constant at a
value of about 2800 W m−1 K−1. This effect has further been
exhibited in figure 5 where κ is plotted against -m at room
temperature for a range of lengths. It appears that κ decreases
with an increase in -m and can reach as low as 450 W m−1 K−1

for W = 0.3 µm at -m = 10−3. As -m decreases, κ tends to
its respective intrinsic value. However as -m increases, the
phonons are strongly scattered more than the edge-roughness
process; thus, κ tends to be independent of SLG length.

At this point, we wish to state that we have taken the Debye
temperature of SLG flake to be 1000 K, a value widely taken
for single walled carbon nanotube (SWCNT) [32]. Principally
using the valance-force-field method, Nika et al [11] suggested
that γ for the out-of-plane phonon mode should be very large
which makes the contribution of the in-plane phonons surpass
the out-of-plane phonons. It has further been suggested by
Kong et al that γ for ZO modes is between −1.38 and −0.17,
whereas for ZA modes, it is within −53 and −1.46 [40]. We
thus take the ZA phonon mode Gruneisen parameter to be equal
to −1.24, a value similar to that of SWCNT [41] and in between
the LA mode (1.8) and TA mode (0.75) [2]. Using these values,
we find that our proposed closed-form analytical model is
in excellent match with the available experimental values. In
addition, the geometric parameter F has been restricted to
a value 2.5 for the figures 1, 3, 4 and 5 to standardize our
theoretical model while F = 0.08 in figure 2 to present the
interaction between the edge-roughness and heavy isotopic
impurity scatterings. Finally, we wish to conclude this section
by noting the fact that the dominance of the ZA flexural mode
due to a higher phonon density of states makes κ follow a T1.5

dependence instead of a T2 dependence due to the in-plane LA
and TA modes, respectively. This is the main reason behind
neglecting the contribution of both the in-plane modes on κ as
exhibited in equation (1).

5
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4. Conclusions

The thermal conductivity of suspended SLG has been
analytically presented using the exact quadratic behavior of
ZA flexural phonons. Using this, we show that at lower
temperature, κ exhibits a T 1.5 behavior due to the edge-
roughness scattering, while beyond room temperature, it is
the Umklapp scattering which dominates and makes κ follow
a T −2 behavior. We find that these behaviors in our model
are best explained through the upper limit of Debye cut-
off frequency in the second-order three-phonon Umklapp
scattering of the long phonon waves that actually remove the
thermal conductivity singularity by contributing a constant
scattering rate at low frequencies. The effect of isotopic
scattering has also been included which lowers the value of
κ significantly. Excellent experimental match has been found
that validates our theoretical model over a wide range of
temperatures.
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