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a b s t r a c t

We propose a unified model for large signal and small signal non-quasi-static analysis of long channel
symmetric double gate MOSFET. The model is physics based and relies only on the very basic approxima-
tion needed for a charge-based model. It is based on the EKV formalism [Enz C, Vittoz EA. Charge based
MOS transistor modeling. Wiley; 2006] and is valid in all regions of operation and thus suitable for RF
circuit design. Proposed model is verified with professional numerical device simulator and excellent
agreement is found.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Double gate metal oxide semiconductor field effect transistor
(DG MOSFET) is appearing as replacement for bulk MOSFET in
sub-45 nm technology nodes. In order to use these devices in RF
circuit design, one needs to develop efficient models suitable for
high frequency operation which will take into account the non-
quasi-static effects [1–4]. At these frequencies, the basic assump-
tion of quasi-static (QS) analysis [5] that the channel charge is
exclusive function of terminal voltages, breaks down due to the fi-
nite transit time of the carriers through the channel, and thus they
become unreliable for circuit design purpose. The existing litera-
ture [5–9] on symmetric double gate MOSFET is based on quasi-
static assumption. To the best of our knowledge, for the first time
a unified large- and small-signal NQS model for symmetric DG is
being proposed in this work, some initial results of which were
presented in [1]. The current equation for a MOSFET (as well as
DG MOSFET) can be written as [10],

I ¼ �Wln
dVch

dx
Q i ð1Þ

and the continuity equation is [10],

@I
@x
¼W

@Qi

@t
ð2Þ

where the I, Qi, Vch, ln, W, t and x denote current, inversion charge,
channel quasi-fermi potential, electron mobility, gate width, time
and longitudinal direction, respectively. Now if the first equation
is substituted in the second one and dVch

dx is expressed as some func-
tion of dQi

dx , (for detailed description, please refer to Section 3.1) we
get a non-linear partial differential equation (PDE) where the
dependent variable is the inversion charge Qi and the independent
variables are x and t. Large signal NQS modeling demands an analyt-
ical solution of this PDE, which is extremely difficult. Relaxation
time based methods [11] are easy to implement but not sufficiently
accurate at high frequencies. Channel segmentation methods [12]
allow arbitrary level of accuracy but are computationally expensive.
Recently effort has been put to solve the PDE directly in a semi-
numerical manner. Galerkin [13] and cubic spline method [14] fall
in this category. In this paper, we convert the non-linear PDE into
ordinary differential equations (ODE) using cubic-spline collocation
method developed in [14]. This ODE system is solvable in a circuit
simulator as has been shown in [15]. It is useful to mention here
that no analytical solution exists till today even for transient non-
quasi-static analysis for bulk MOSFET.

However if we are interested in the special case of small signal
sinusoidal voltages, then @

@t can be replaced by jx and consequently
the problem reduces to an ODE which is solvable analytically. Thus
it is possible to obtain analytical expressions for y parameters.
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Though there are several core models for symmetric DG MOSFET,
we have used the EKV model [16] for deriving the NQS parameters.
This is because we feel that the EKV model is much simpler com-
pared to the other models for DG, and gives a very simple DC charge
control equation. Furthermore, a short channel DC model for sym-
metric DG [6] has already been proposed by the EKV group which
we would like to use in future in order take into consideration the
short channel effects in the non-quasi-static analysis. The proposed
non-quasi-static model is verified against the numerical device sim-
ulator Atlas [17] and excellent agreement is found.

The remainder of the paper is organized as follows. In Section 2,
we go through the DC model of symmetric DG MOSFET, in Section
3, we derive the large signal NQS model, in Section 4 we derive the
small-signal NQS parameters and finally in Section 5 we validate
our model against a professional numerical device simulator.

2. EKV core model of long channel symmetrical DG MOSFET

We assume long channel DG undoped body MOSFET and con-
stant mobility along the channel. Solving the Poisson’s equation
for the structure shown in Fig. 1 with gradual channel approxima-
tion we get [16],

VG � Vch �
Q G

Cox
þ UT � ln

Q2
G

2 � �si � e � UT � ni
þ Q G

e � ni � tsi=2

 !
ð3Þ

where QG is the charge density per unit area under each gate, e the
electronic charge, �si the permittivity of silicon, UT(=KT/e) the ther-
mal voltage, ni the intrinsic carrier concentration, tsi the silicon film
thickness, Cox the oxide capacitance per unit area and VG is the volt-
age applied to both the gate electrodes simultaneously. A midgap
work function metal gate with a zero barrier with respect to intrin-
sic silicon has been assumed without loss of generality. Now we
introduce a normalization of the channel charge and current
according to the EKV model. Note that here the normalization fac-
tors are twice that of bulk MOSFETs. Introducing the charge normal-
ization factor Qn = �4CoxUT (note the minus sign, it is different from
the normalization factor used in [16], but conforms with the sign
convention used in [18]) and voltage normalization factor as
Vn = UT, (3) can be rewritten as,1

vg � vch þ ln
qint

2

� �
¼ 2q0 þ ln

q0

2

� �
þ ln 1þ q0

2
Cox

Csi

� �
ð4Þ

where qint = �e�ni� tsi/Qn, Cox ¼ �ox
tox

and Csi ¼ �si
tsi

, q0(=�qg/2) is the nor-
malized inversion charge per unit area. We have neglected any fixed
oxide charges. A methodology to compute the mobile charge den-
sity as an explicit function of bias voltages (vg and vd or vs) by solv-
ing (4) is given in [19]. Taking differential of (4) we get,

�dvch ¼ 2þ 1
q0
þ

Cox
2Csi

1þ q0Cox
2Csi

 !
dq0 ð5Þ

By substituting I0 ¼ i0 � 4CoxU2
T

W
L ln, Q0 = �q0 � 4CoxUT and x = L � n (L

is the gate length) in the current Eq. (1) with DC conditions, we get

i0 ¼ q0
dvch

dn
ð6Þ

From (5) and (6) we get,

i0 ¼ � 2q0 þ 1þ
q0Cox
2Csi

1þ q0Cox
2Csi

 !
dq0

dn
ð7Þ

Remembering that DC current is invariant along the transistor
length, we integrate from source to drain and get,

i0

Z 1

0
dn ¼

Z qs

qd

2q0 þ 1þ
q0Cox
2Csi

1þ q0Cox
2Csi

 !
dq0 ð8Þ

Carrying out the integration we finally obtain,

i0 ¼ LðqsÞ � LðqdÞ ð9Þ

where

Lðq0Þ ¼ q2
0 þ 2q0 �

2Csi

Cox
ln 1þ q0Cox

2Csi

� �
ð10Þ

which can be approximated as,

Lðq0Þ � q2
0 þ 2q0 ð11Þ

It is worth mentioning here that Eqs. (3)–(7) are also valid under
non steady-state conditions.

3. Large signal non-quasi-static analysis

3.1. Problem formulation

The total current under transient conditions can be expressed as
(we replace q0 and i0 in (7) with qi and i),

i ¼ � 2qi þ 1þ
qi �Cox
2Csi

1þ qiCox
2Csi

 !
dqi

dn
ð12Þ

By substitution of Qi = �qi � 4CoxUT, I = i � Ispec, Ispec ¼ 4lnCoxU2
T

W
L ;

t ¼ s
x0

and x0 ¼ lnUT

L2 in the continuity Eq. (2) we obtain,

@i
@n
¼ � @qi

@s
ð13Þ

where every quantity is normalized. Using (12) in (13), we get,

@

@n
2qi þ 1þ

qi �Cox
2Csi

1þ qiCox
2Csi

 !
@qi

@n

" #
¼ @qi

@s
ð14Þ

It should be noted that there is no non-quasi-static effect in the
inversion charge at source and drain terminals, so qi(0,s) = qis(s)
and qi(1,s) = qid(s) are computed by solving (4) at the source and
drain. These are the boundary conditions of the PDE (14). We recall
from (9), i0 = L(qs) � L(qd). If the integration is done from source to n
in (8), we get, i0n = L(qs) � L(qi(n)). Hence,

n ¼ LðqsÞ � LðqiðnÞÞ
LðqsÞ � LðqdÞ

ð15Þ

Carrying out the simplification, we have,

qiðn; s ¼ 0Þ ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ LðqsÞ � nðLðqsÞ � LðqdÞÞ

p
ð16Þ

Fig. 1. Schematic of the DG MOSFET structure.

1 We use capitalized letters for un-normalized quantities, small letters for
normalized quantities, subscript 0 (e.g. q0) for DC, subscript i (e.g. qi) for total and ��
(e.g. �q) for small signal quantities. Furthermore, qis(id) represents the total source
(drain) charge, qs(d) stands for the DC source (drain) charge and qsðdÞ means small
signal source (drain) charge.
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which is the initial condition of the PDE given in (14). Please note
that the initial condition has to be calculated at steady state, be-
cause (16) is true for DC conditions only.

3.2. Solution by cubic-spline collocation method

Now we shall use the method developed in [14] to derive a
semi-numerical solution for the non-linear PDE developed above.
We divide the channel into three regions, 0 6 n 6 1

3 ;
1
3 6 n 6 2

3
and 2

3 6 n 6 1. Next we use three cubic equations in these three re-
gions to approximate qi as follows:

qiðnÞ ¼
a1 þ b1 � nþ c1 � n2 þ d1 � n3 0 6 n 6 1

3

a2 þ b2 � nþ c2 � n2 þ d2 � n3 1
3 6 n 6 2

3

a3 þ b3 � nþ c3 � n2 þ d3 � n3 2
3 6 n 6 1

8>><
>>: ð17Þ

The system of Eq. (17) has to satisfy qi(0,s) and qi(1,s) at the
boundaries at all s. Along with that we have the continuity condi-
tions at the region boundaries as follows:

qi
1
3

� ��
¼ qi

1
3

� �þ
¼ qi

1
3

� �

qi
2
3

� ��
¼ qi

2
3

� �þ
¼ qi

2
3

� �
dqi

dn

����
1=3�
¼ dqi

dn

����
1=3þ

dqi

dn

����
2=3�
¼ dqi

dn

����
2=3þ

d2qi

dn2

�����
1=3�

¼ d2qi

dn2

�����
1=3þ

d2qi

dn2

�����
2=3�

¼ d2qi

dn2

�����
2=3þ

ð18Þ

Furthermore, we have the natural boundary conditions,

d2qi

dn2

�����
0

¼ 0

d2qi

dn2

�����
1

¼ 0 ð19Þ

Please note here that qi
1
3 ;0
� 	

and qi
2
3 ;0
� 	

are to be calculated from
(16). The 12 conditions defined above help us to determine the 12
constants (they are functions of time, but independent of n) a1,2,3,
b1,2,3, c1,2,3 and d1,2,3. Solving the system of equations, we get,

a1 ¼ qið0Þ

b1 ¼ �
19
5

qið0Þ þ
1
5

qið1Þ þ
24
5

qi
1
3

� �
� 6

5
qi

2
3

� �
c1 ¼ 0

d1 ¼ �
36
5

qið0Þ �
9
5

qið1Þ �
81
5

qi
1
3

� �
þ 54

5
qi

2
3

� �

a2 ¼ þ
8
5

qið0Þ �
2
5

qið1Þ �
8
5

qi
1
3

� �
þ 7

5
qi

2
3

� �

b2 ¼ �
46
5

qið0Þ þ
19
5

qið1Þ þ
96
5

qi
1
3

� �
� 69

5
qi

2
3

� �

c2 ¼
81
5

qið0Þ �
54
5

qið1Þ �
216

5
qi

1
3

� �
þ 189

5
qi

2
3

� �

d2 ¼ �9qið0Þ þ 9qið1Þ þ 27qi
1
3

� �
� 27qi

2
3

� �

a3 ¼ �
8
5

qið0Þ þ
22
5

qið1Þ þ
48
5

qi
1
3

� �
� 57

5
qi

2
3

� �

b3 ¼
26
5

qið0Þ �
89
5

qið1Þ �
156

5
qi

1
3

� �
þ 219

5
qi

2
3

� �

c3 ¼ �
27
5

qið0Þ þ
108

5
qið1Þ þ

162
5

qi
1
3

� �
� 243

5
qi

2
3

� �

d3 ¼
9
5

qið0Þ �
36
5

qið1Þ �
54
5

qi
1
3

� �
þ 81

5
qi

2
3

� �
ð20Þ

The key point of this method is that qi
1
3

� 	
and qi

2
3

� 	
have to sat-

isfy the PDE (14) exactly. We denote Cox
2�Csi
¼ m, and after expanding

(14) we get,

2qi þ 1þ m � qi

1þm � qi

� �
@2qi

@n2 þ 2þ m

ð1þm � qiÞ
2

 !
@qi

@n

� �2

¼ @qi

@s

ð21Þ

Substituting q ¼ qi
1
3

� 	
and q ¼ qi

2
3

� 	
, respectively, in (21) we get

(22) and (23),

2qi
1
3

� �
þ 1þ

m � qi
1
3

� 	
1þm � qi

1
3

� 	
" #

@2qi

@n2

�����
n¼1

3

þ 2þ m

1þm � qi
1
3

� 	� 	2

" #

@qi

@n

� �2
�����
n¼1

3

¼
@qi

1
3

� 	
@s ð22Þ

2qi
2
3

� �
þ 1þ

m � qi
2
3

� 	
1þm � qi

2
3

� 	
" #

@2qi

@n2

�����
n¼2

3

þ 2þ m

1þm � qi
2
3

� 	� 	2

" #

@qi

@n

� �2
�����
n¼2

3

¼
@qi

2
3

� 	
@s

ð23Þ

where

@qi

@n

����
n¼1

3

¼ �7
5

qið0Þ �
2
5

qið1Þ �
3
5

qi
1
3

� �
þ 12

5
qi

2
3

� �

@2qi

@n2

�����
n¼1

3

¼ 72
5

qið0Þ �
18
5

qið1Þ �
162

5
qi

1
3

� �
þ 108

5
qi

2
3

� �
ð24Þ

and,

@qi

@n

����
n¼2

3

¼ 2
5

qið0Þ þ
7
5

qið1Þ �
12
5

qi
1
3

� �
þ 3

5
qi

2
3

� �

@2qi

@n2

�����
n¼2

3

¼ �18
5

qið0Þ þ
72
5

qið1Þ þ
108

5
qi

1
3

� �
� 162

5
qi

2
3

� �
ð25Þ

Finally, the coupled ordinary differential Eqs. (22) and (23) are
solved to calculate qi

1
3 ; s
� 	

and qi
2
3 ; s
� 	

. It is worth mentioning here
that these coupled ODEs can be solved as in [21] by selecting
appropriate sub-circuits.

3.3. Derivation of terminal currents

From [20] we can write,

IDðtÞ ¼ I0ðtÞ þ
d
dt
�
Z L

0
W

x
L

Qiðx; tÞdx ð26Þ

where ID(t) is the total time varying drain current, I0(t) is the steady
state drain current computed from the DC current equation consid-
ering time varying voltage. Normalizing it with the usual normaliz-
ing factors of the DG EKV Model we get,

idðsÞ ¼ i0ðsÞ �
d

ds
�
Z 1

0
qindn ð27Þ

where small letters denote corresponding normalized quantities.
Similarly, we can derive,

S. Sarkar et al. / Solid-State Electronics 54 (2010) 1421–1429 1423
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isðsÞ ¼ � i0ðsÞ þ
d

ds
�
Z 1

0
qið1� nÞdn

� �
ð28Þ

where is(s) is the normalized total source current entering the
source, and hence the leading negative sign. Using the expression
for qi in the three regions, i.e. 0 6 n 6 1

3 ;
1
3 6 n 6 2

3 and 2
3 6 n 6 1

along with the values of a1. . .d3 (20) in (27) and (28) we get the
expressions for drain and source current as follows,

idðsÞ ¼ i0ðsÞ �
d

ds
� 1

90
qið0Þ þ

11
90

qið1Þ þ
1

10
qi

1
3

� �
þ 4

15
qi

2
3

� �
 �
ð29Þ

isðsÞ ¼ �i0ðsÞ �
d

ds
� 11

90
qið0Þ þ

1
90

qið1Þ þ
4

15
qi

1
3

� �


þ 1
10

qi
2
3

� ��
ð30Þ

As DG MOSFET is a three terminal device, gate current can be
calculated as ig(s) = �(id(s) + is(s)). To un-normalize the currents,
we need to multiply them with Ispec.

4. Small signal non-quasi-static analysis

In a generalised charge-based model for DG MOSFET, we can
write [18],

iðnÞ ¼ f ðqiÞ
dqi

dn
ð31Þ

where i(n) represents the total normalized current and qi is the total
normalized inversion charge per unit area. It is useful to mention
here that from (31) we get the DC current equation,

i0 ¼ f ðq0Þ
dq0

dn
ð32Þ

Now performing the perturbation analysis of (31) we can write

i0 þ iðnÞ ¼ f ðq0 þ �qÞ dðq0 þ �qÞ
dn

ð33Þ

where the overbarred symbols represent small signal quantities.
Expanding by Taylor’s series we get,

i0 þ iðnÞ ¼ f ðq0Þ
dq0

dn
þ f ðq0Þ

d�q
dn
þ df

dq0

�q
dq0

dn
ð34Þ

where we have neglected second order effects. So, iðnÞ becomes

iðnÞ ¼ f ðq0Þ
d�q
dn
þ df

dn
�q ð35Þ

So finally we obtain

iðnÞ ¼ dðf ðq0Þ�qÞ
dn

ð36Þ

We have already derived the normalized form of the continuity
equation in Section 3 as,

@i
@n
¼ � @qi

@s
ð37Þ

Putting i ¼ i0 þ�i and qi ¼ q0ðnÞ þ qðn; sÞ we get (i and qi are total
quantities, i0 and q0 are DC quantities, �i and qðn; sÞ are small signal
quantities),

@�i
@n
¼ � @qðn; sÞ

@s
ð38Þ

which is equivalent to

d�i
@n
¼ �jxn�q ð39Þ

where xn is the normalized frequency. Again (32) can be modified
to write

dn
dq0
¼ f ðq0Þ

i0
ð40Þ

Therefore from (39) and (40) we get,

d�i
dq0
¼ �jxn�q

f ðq0Þ
i0

ð41Þ

Now, from (36), (41) and (40) we get,

d2�i

dq2
0

þ jxn

i2
0

f ðq0Þ�i ¼ 0 ð42Þ

From (32) and (7) and approximating q0Cox
2Csi

.
1þ q0Cox

2Csi

� �
� 1 we

get,

d2�i

dq2
0

� 2
jxn

i2
0

ðq0 þ 1Þ�i ¼ 0 ð43Þ

Now let us substitute q0 + 1 = x, �i ¼ y and k ¼ �2 jxn

i20
. Then (43)

becomes

d2y

dx2 þ kxy ¼ 0 ð44Þ

Then by substitution of y ¼ u
ffiffiffi
x
p

and z ¼ 2
3

ffiffiffi
k
p

x
3
2 (44) becomes

z2 d2u

dz2 þ z
du
dz
þ z2 � 1

9

� �
u ¼ 0 ð45Þ

which is nothing but Bessel’s differential equation. So we can write
the solution in terms of Bessel functions of the first kind with frac-
tional order,

u ¼ c1J1
3
ðzÞ þ c2J�1

3
ðzÞ ð46Þ

In terms of �i and q0 the solution is

�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 þ 1

p
c1J1

3
ðGðq0ÞÞ

�
þ c2J�1

3
ðGðq0ÞÞ ð47Þ

where

Gðq0Þ ¼
2
ffiffiffiffiffiffiffiffiffiffi
2xn
p

3i0
e

3jp
4 ðq0 þ 1Þ

3
2

� �
ð48Þ

We can determine the charge perturbation �q, from (41) by dif-
ferentiation of (47) as follows:

d�i
dq0
¼ ðq0 þ 1Þ

ffiffiffiffiffiffiffiffiffiffi
2xn
p

i0
e3jp4 � c1J�2

3
ðGðq0ÞÞ � c2J2

3
ðGðq0ÞÞ

h i
ð49Þ

where the relations J0nðxÞ þ n
x

� 	
JnðxÞ ¼ Jn�1ðxÞ and

J0nðxÞ � n
x

� 	
JnðxÞ ¼ �Jnþ1ðxÞ have been used. Now from (41) we get,

�q ¼ 1ffiffiffiffiffiffiffiffiffiffi
2xn
p ejp4 c1J�2

3
ðGðq0ÞÞ � c2J2

3
ðGðq0ÞÞ

h i
ð50Þ

In (50) we substitute ½qs; qs� and ½qd; qd� and get the following
two equations

qs ¼
1ffiffiffiffiffiffiffiffiffiffi
2xn
p ejp4 c1J�2

3
ðGðqsÞÞ � c2J2

3
ðGðqsÞÞ

h i
ð51Þ

qd ¼
1ffiffiffiffiffiffiffiffiffiffi
2xn
p ejp4 c1J�2

3
ðGðqdÞÞ � c2J2

3
ðGðqdÞÞ

h i
ð52Þ

where qsðdÞ is the charge perturbation at source (drain) and qs (d) is
the d�c charge at source (drain). From these two equations we can
solve for c1 and c2 as follows:

1424 S. Sarkar et al. / Solid-State Electronics 54 (2010) 1421–1429
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c1 ¼

ffiffiffiffiffiffiffiffiffiffi
2xn
p

e�
jp
4 qsJ2

3
ðGðqdÞÞ � qdJ2

3
ðGðqsÞ

� �
J2

3
ðGðqdÞÞJ�2

3
ðGðqsÞÞ � J2

3
ðGðqsÞÞJ�2

3
ðGðqdÞÞ

ð53Þ

c2 ¼

ffiffiffiffiffiffiffiffiffiffi
2xn
p

e�
jp
4 qsJ�2

3
ðGðqdÞÞ � qdJ�2

3
ðGðqsÞ

� �
J2

3
ðGðqdÞÞJ�2

3
ðGðqsÞÞ � J2

3
ðGðqsÞÞJ�2

3
ðGðqdÞÞ

ð54Þ

Now we define the fundamental charge based Y parameters as
in [1,2],

is ¼ Yq
ssqs þ Yq

sdqd ð55Þ
id ¼ Yq

dsqs þ Yq
ddqd ð56Þ

where isð¼ iðn ¼ 0ÞÞ is the small signal current leaving the device
through the source terminal and idð¼ iðn ¼ 1ÞÞ is entering the device
through the drain terminal. Substituting the values of c1 and c2 in
(47) we get the fundamental charge based Y parameters (we are
using Y for charge based and y for voltage domain y parameters),

Yq
sðdÞs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qsðdÞ þ 1

q ffiffiffiffiffiffiffiffiffiffi
2xn

p
e�jp4

�
J1

3
ðGðqsðdÞÞÞJ2

3
ðGðqdÞÞ þ J�1

3
ðGðqsðdÞÞÞJ�2

3
ðGðqdÞÞ

J2
3
ðGðqdÞÞJ�2

3
ðGðqsÞÞ � J2

3
ðGðqsÞÞJ�2

3
ðGðqdÞÞ

ð57Þ

Yq
sðdÞd ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qsðdÞ þ 1

q ffiffiffiffiffiffiffiffiffiffi
2xn

p
e�jp4

�
J1

3
ðGðqsðdÞÞÞJ2

3
ðGðqsÞÞ þ J�1

3
ðGðqsðdÞÞÞJ�2

3
ðGðqsÞÞ

J2
3
ðGðqdÞÞJ�2

3
ðGðqsÞÞ � J2

3
ðGðqsÞÞJ�2

3
ðGðqdÞÞ

ð58Þ

We see that there is a term (q0 + 1) in expressions for charge
based Y parameters as well as in G(q0). This is a direct consequence
of the approximation Cox �q0

2Csi

.
1þ q0Cox

2Csi

� �
� 1 while deriving f(q0).

While this approximation allows us to solve the differential equa-
tion, it does introduce a small error in weak inversion where this
term is almost zero instead of 1. So f (q0) � �2(q0 + 0.5) in weak
inversion whereas in strong inversion it is approximately
�2(q0 + 1). To take care of this, we change the term (q0 + 1) in
the expressions for G(q0) and charge based Y parameters to
q0 þ 1

2þ 1
2 �

Cox �q0
2Csi

.
1þ q0Cox

2Csi

� �
. Also note that if is is denoted as the cur-

rent entering the device through the source terminal we have to
negate Yq

sd and Yq
ss. Now we derive the normalized conventional

voltage domain y parameters in terms of charge based Y parame-
ters as follows:

ydðsÞx ¼
didðsÞ

dvx
¼ @idðsÞ

@vx
þ @idðsÞ

@qs

@qs

@vx
þ @idðsÞ

@qd

@qd

@vx

¼ 0þ Yq
dðsÞs

@qs

@vx
þ Yq

dðsÞd
@qd

@vx
ð59Þ

The first term in (59) will always be zero because from (47) we can
see that neither is nor id is an explicit function of terminal voltages.
Now let us derive the four important un-normalized y parameters
for DGMOS.

ydðsÞg ¼
Ispec

UT
Yq

dðsÞs
@qs

@vg
þ Yq

dðsÞd
@qd

@vg


 �

ysd ¼
Ispec

UT
Yq

ss
@qs

@vd
þ Yq

sd

@qd

@vd


 �

yds ¼
Ispec

UT
Yq

ds

@qs

@vs
þ Yq

dd

@qd

@v s


 �
ð60Þ

Substituting vch = vs, vd and q0 = qs, qd, respectively, in (4) we
obtain,

@qdðsÞ

@vg
¼ 1

2þ 1
qdðsÞ
þ

Cox
2Csi

1þ
qdðsÞCox

2Csi

ð61Þ

and

@qdðsÞ

@vdðsÞ
¼ � 1

2þ 1
qdðsÞ
þ

Cox
2Csi

1þ
qdðsÞCox

2Csi

ð62Þ

where @qd
@vs

and @qs
@vd

are zero

4.1. Derivation of other voltage domain y parameters

As we are dealing with symmetric DG MOSFET, we have three
terminals, both the gates are tied to form a single gate terminal,
and we have the source and drain terminals. So we can write the
y parameter matrix as follows-

id

is

ig

2
64

3
75 ¼

ydg yds ydd

ysg yss ysd

ygg ygs ygd

2
64

3
75

vg

vs

vd

2
64

3
75 ð63Þ

where all symbols represent small signal quantities. Now if we
keep, vd = vs = 0, and remembering that id + is + ig = 0, we can show
[10],

ydg þ ysg þ ygg ¼ 0 ð64Þ

Similarly we can get two more equations from the other two
columns. Also, if vd = vs = vg, there is no relative voltage drop be-
tween the terminals, so all small signal currents are zero. So we ob-
tain [10]

ydg þ yds þ ydd ¼ 0 ð65Þ

Similarly we get two more equations from the other two rows.
Finally from these six equations we can determine all the y param-
eters of DG MOSFET.

4.2. Importance of the small signal model and its implementation

It is worth noting that when the cubic spline method is imple-
mented in verilog A, both the large signal and small signal analysis
can be performed due to the sub-circuit based approach followed
in [21]. However, this works only for verilog A and some specific
simulator interfaces. There are in-house simulators in various
industries where both transient and small signal model needs to
be coded separately. In addition, large signal NQS is very difficult
to converge. Having a separate small signal model will help design-
ers to explore NQS effects in their circuits in the cases where large
signal NQS does not converge. Formulation in terms of Bessel func-
tions helps us to gain a physical insight into the problem. Moreover
an analytical formulation is indeed invaluable from the point of
view of a circuit designer since it enables him to see how bias con-
ditions and other device parameters change the various y parame-
ters of the device.

Numerical evaluation of Bessel functions of fractional orders
and complex arguments tends to be slow. However solutions to
such problems have already been discussed in [3,4]. In [3], the
authors have taken second order polynomial approximations to
get a form implementable in a circuit simulator. Later in [4], an
approximate NQS parameter model was presented, based on
asymptotic behavior of Bessel functions. After using suitable
approximations, their final form contains only sine and cosine
hyperbolic terms and can easily be implemented in a circuit
simulator.

5. Model validation and discussion

Two-dimensional device simulations were done on symmetrical
DG MOSFET, using 2 D Atlas Device simulator [17]. The device struc-
ture was created with abrupt source and drain-body junctions. The
body was kept undoped (i.e. intrinsic), and the source and drain re-

S. Sarkar et al. / Solid-State Electronics 54 (2010) 1421–1429 1425



Author's personal copy

gions were kept short in length and were doped at 1019 cm�3 n-type.
In order to focus on just the non-quasi-static effects, other models
were disabled, such as vertical-field mobility degradation, parallel
field dependent mobilty, and doping-dependent mobility. Recombi-
nation generation models, quantum mechanical models, etc., were
also turned off. A constant mobility of 300 cm2/(V s) has been used.
A midgap work function metal with a zero barrier with respect to
intrinsic silicon was used for the gate electrodes. The DG MOSFET
has a length and width of 1 lm, oxide thickness of 1.5 nm and silicon
body thickness, tsi of 10 nm.

5.1. Validation of the large signal NQS model

To validate the large signal model, we apply a rising and falling
ramp at the gate. This results in extreme transients. The voltage
waveforms applied at the gate are shown in Fig. 2. The rise time
of gate voltage is 50 ps which is less than the transit time of the de-
vice. The transit time (�66 ps) of the device is estimated as

L2

ln �ðVgs�VtoÞ where Vto= gate work function(=0)� UT�ln(qint/2) [6].
Next, we give the current waveforms for the four cases as men-
tioned below:

(1) A rising ramp applied at the gate while saturation condition
is ensured.

(2) A falling ramp applied at the gate while saturation condition
is ensured.

(3) A rising ramp applied at the gate while linear condition is
ensured.

(4) A falling ramp applied at the gate while linear condition is
ensured.

To ensure a saturation condition we have kept Vds = 1 V, while
for biasing the DGMOS in linear region we have kept Vds = 0.1 V.
As we can see, there is appreciable match between the proposed
model and the results obtained from the device simulator (Figs. 3–
6).

To see how the non-quasi-static model differs from the quasi-
static model, we recall from (27)

idðsÞ ¼ i0ðsÞ �
d

ds
�
Z 1

0
qindn ð66Þ

The main assumption of the QS models is that the channel
charge reaches the steady-state profile instantaneously. Using it
and the fact that LðqiÞ � q2

i þ 2qi, we get,Z 1

0
qindn ¼

Z 1

0
nð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ LðqisÞ � nðLðqisÞ � LðqidÞÞ

p
Þdn ð67Þ

(67) can be used in (66) to get the expression for large signal quasi-
static current in terms of qis; qid;

dqis
ds (qis and qid represent total source

and drain normalized charge) and dqid
ds only. The expression can be

derived in a closed form, however it is too long to provide it here.
When the QS current component has been obtained, it can be subr-
acted from the total current derived in (29) to obtain the non-quasi-
static component alone. Various components of drain current, i.e.
i0(t) (computed from the DC equation with time varying voltages),
quasi-static, non-quasi-static (=total � quasi-static) and total drain
current, id(t) are shown in Fig. 7. The drain voltage is kept at 1 V
and gate is ramped from 0 to 1 V. Ramp time is 50 ps, from
30.303 ps to 80.303 ps. During the process qid � 0, but qis increasesFig. 2. The rising and falling gate voltage waveforms.

Fig. 3. Various currents when a rising ramp is applied at the gate in saturation:
continuous lines represent model and symbols represent device simulation results.
Diamond, ‘+’ and ‘o’, respectively, stand for drain, source and gate current.

Fig. 4. Various currents when a falling ramp is applied at the gate in saturation:
continuous lines represent model and symbols represent device simulation results.
Diamond, ‘+’ and ‘o’, respectively, stand for drain, source and gate current.

Fig. 5. Various currents when a rising ramp is applied at the gate in linear region:
continuous lines represent model and symbols represent device simulation results.
Diamond, ‘+’ and ‘o’, respectively, stand for drain, source and gate current.
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as gate voltage inceases, hence dqis
dt > 0. The quasi-static component

of the current is negative during the rise time of gate voltage. The
difference between the QS charge and the actual charge only in-
creases during the rise time of the ramp. However the total drain
current is still zero because the electron wavefront has still not ar-
rived at the drain. So the NQS component is positive and is equal to
the magnitude of the quasi-static component. We also notice that
there is a small, almost flat portion in the non-quasi-static compo-
nent (green2 curve, see the most negative part of the curve) between
the time when i0(t) has reached its steady-state value (as gate volt-
age has reached the steady-state value of 1 V) and the total drain
current actually starts to build up. It is because of the fact that before
the transit time, id(t) is zero and the quasi-static current has reached
the value i0(t) as dqis

ds ¼
dqid
ds ¼ 0. So, the NQS component of the drain

current is equal to the negative of the QS component and also, it is
invariant with time. If the transit time is more, this flat portion of
the curve is elongated. Finally, after the charge profile reaches the
drain, id(t) starts to flow and non-quasi-static component of the cur-
rent gradually goes to zero.

5.2. Validation of the small-signal NQS model

5.2.1. Operation in saturation region
We keep Vds = Vgs = 1 V to ensure saturation condition. A com-

parison of device simulations and our model, is shown in Figs. 8–

11. We see that our model gives good results upto 50 GHz, which
is 14 times the cut off frequency (3.5368 GHz), calculated as

gm
2�p�Cgg

, where gm and Cgg are obtained from atlas simulations [17]
at Vd = Vg = 1 V. In saturation, the drain charge qd is zero, so the sec-
ond terms in (60) are zero. So only the first terms contribute in sat-
uration. We are neglecting velocity saturation and channel length
modulation which results into non-zero drain charge and hence
the second terms in (60) will not be zero anymore. Let us first con-
sider the variation of ydg with frequency. In saturation only Yq

ds con-
tributes to ydg. Yq

ds essentially represents the variation in the small
signal drain current with a perturbation in the source charge. The
behavior of Yq

ds with frequency is illustrated in Fig. 12, where we

Fig. 8. Magnitude of y parameters versus frequency in saturation, ‘+’ stands for ysg,
‘o’ for yds and ydg, diamond sign for ysd. Continuous lines represent model and
symbols represent device simulations. yds and ydg superimpose. Normalized DC
current i0 = 79.

Fig. 9. ydg versus frequency at Vds = 1 V, Vgs = 1 V, normalized drain current i0 = 79.

Fig. 6. Various currents when a falling ramp is applied at the gate in linear region:
continuous lines represent model and symbols represent device simulation results.
Diamond, ‘+’ and ‘o’, respectively, stand for drain, source, and gate current.

Fig. 7. Various components of drain current when a rising ramp is applied at the
gate in saturation region: lines represent model and symbols represent device
simulation results. Red, magenta, green and blue, respectively, stand for total,
quasi-static, i0(t), and NQS component of drain current.

2 For interpretation of color in Figs. 1 and 7, the reader is referred to the web
version of this article. Fig. 10. yds versus frequency at Vds = 1 V, Vgs = 1 V.
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see that if a charge perturbation is applied at the source, its contri-
bution at the drain decreases with increase in frequency because of
very small slope of the profile at the drain. Therefore ydg continu-
ously decreases with frequency. For yds, the same explanation goes,
infact magnitude of yds is same as magnitude of ydg which is evi-
dent from (60)–(62). From (60) it is clear that ysd � 0 in saturation
because @qs

@vd
and @qd

@vd
both are zero. In saturation ysg is governed by

Yq
ss. It essentially means the variation in the source small signal

current with a charge perturbation at the source. As frequency in-
creases, the slope of the charge profile at the source increases
(Fig. 12), hence Yq

ss increases,leading to increase in magnitude of
ysg with frequency. Also note that, ysg + ydg + ygg = 0. At low fre-
quencies, ygg � 0, hence ysg � �ydg. That is evident from Fig. 8

5.2.2. Operation in linear region
We keep Vgs = 1 V and Vds = 0.1 V to bias it in linear (conduction)

mode. A comparison of device simulations and our model, is shown
in Fig. 13–15. Now as the device is biased in linear region qd – 0
and so the second terms in (60) are no more zero. So now all the
charge based Y parameters i.e. Yq

ds;Y
q
ss;Y

q
sd;Y

q
dd contribute.

The first thing we note is that magnitude of yds and ydg are no
longer equal , it is because of non-zero ydd [see (65)] (or equiva-
lently finite channel resistance). ysg � �ydg at low frequencies is va-
lid in linear region also. From the discussion we already had, we
can say that Yq

ss;Y
q
dd increases with frequency and Yq

sd;Y
q
ds decreases

with frequency. ydg and ysg have, respectively, Yq
dd and Yq

ss contrib-
uting to their increase with frequency, whereas yds and ysd has con-
tribution from Yq

ds and Yq
sd, respectively, so they fall with frequency.

Also we see that ysd � yds and ydg � ysg from Fig. 14 and 15, this
emphasizes the interchangeability of the source and drain
terminals.

6. Conclusion

In this paper, we derived a unified model for large signal and
small-signal NQS parameters of symmetric double gate MOSFETs
using charge-based modeling approach that is valid in all regions
of inversion. The model has been seen to be in good agreement
with 2D simulations. It has also been demonstrated that only four
complex transadmittances are needed to fully characterize the
small signal operation of the device and all other transadmittance
parameters can be deduced from them. Most parameters in the
model are expressed in terms of normalized variables, which are
independent of the process parameters.

Fig. 11. ysg versus frequency at Vds = 1 V, Vgs = 1 V.

Fig. 12. Illustration of high frequency behavior of Yq
ss and Yq

ds: a perturbed charge
profile when the perturbation is at the source.

Fig. 13. Magnitude of y parameters versus frequency in linear region, ‘o’ for ysg, ‘+’
for ydg, squares for yds, and diamonds for ysd. Continuous lines represent model and
symbols represent device simulations. Normalized current, i0 = 27.6.

Fig. 14. ysg and ysd versus frequency in linear region, ‘x’ for imag(ysg), ‘o’ for real
(ysg), diamond for imag(ysd), square for real (ysd).

Fig. 15. ydg and yds versus frequency in linear region. ‘+’ Represents real (ydg),
diamond for imag (ydg), ‘o’ for imag(yds), squares for real (yds).

1428 S. Sarkar et al. / Solid-State Electronics 54 (2010) 1421–1429



Author's personal copy

Acknowledgement

One of the authors, Sudipta Sarkar would like to thank Rutwick
Kumar Kashyap, Nanoscale Device Research Lab, CEDT, Indian
Institute of Science for discussions on spice and implementation is-
sues of the proposed models.

References

[1] Sarkar Sudipta, Roy Ananda S, Mahapatra Santanu. A non-quasi-static small
signal model for long channel symmetric DG MOSFET. Proc Int Conf VLSI Des
2010:21–6.

[2] Roy Ananda S, Enz Christian C, Sallese Jean-Michel. Compact modeling of
anomalous high-frequency behavior of MOSFET’s small-signal NQS parameters
in presence of velocity saturation. IEEE Trans Electron Dev
2006;53(9):2044–50.

[3] Sallese JM, Porret A-S. A novel approach to charge-based non-quasi-static
model of the MOS transistor valid in all modes of operation. Solid-State
Electron 2000;44:887–94.

[4] Porret AS, Sallese JM, Enz CC. A compact non-quasi-static extension of a
charge-based MOS model. IEEE Trans Electron Dev 2001;48(8):1647–54.

[5] Lu Huaxin, Taur Yuan. An analytic potential model for symmetric and
asymmetric DG MOSFETs. IEEE Trans Electron Dev 2006;53(5):107–9.

[6] Diagne Birahim, Pre’galdiny Fabien, Lallement Christophe, Sallese Jean-Michel,
Krummenacher Francois. Explicit compact model for symmetric double-gate
MOSFETs including solutions for small-geometry effects. Solid-State Electron
2008;52:99–106.

[7] Pregaldiny F, Krummenacher F, Sallese J-M, Diagne B, Lallement C. An explicit
quasi-static charge-based compact model for symmetric DG MOSFET NSTI-
Nanotech; 2006.

[8] Lu Huaxin, Yu Bo, Taur Yuan. A unified charge model for symmetric double-
gate and surrounding-gate MOSFETs. Solid-State Electron 2008;52:67–72.

[9] Borli Hakon, Kolberg Sigbjorn, Fjeldly Tor A. Capacitance modeling of short-
channel double-gate MOSFETs. Solid-State Electron 2008;52:1486–90.

[10] Tsividis Y. Operation and modeling of the MOS transistor. 2nd ed. New York:
Oxford university press; 2003.

[11] Chan M, Hui KY, Hu C, Ko PK. A robust and physical BSIM3 non-quasi-static
transient and AC small-signal model for circuit simulation. IEEE Trans Electron
Dev 1998;45(4):834–41.

[12] Scholten AJ, Tiemeijer LF, de Vreede PWH, Klaassen DBM. A large signal non-
quasi-static MOS model for RF circuit simulation. EDM Tech Dig 1999:163–6.

[13] Roy Ananda S, Vasi Juzer M, Patil Mahesh B. A new approach to model
nonquasi-static (NQS) effects for mosfets-part i: large-signal analysis. IEEE
Trans Electron Dev 2003;50(12):2393–400.

[14] Wang Hailing, Chen Ten-Lon, Gildenblat Gennady. Quasi-static and nonquasi-
static compact MOSFET models based on symmetric linearization of the bulk
and inversion charges. IEEE Trans Electron Dev 2003;50(11):2262–72.

[15] Wang H, Gildenblat G. A robust large signal non-quasi-static MOSFET model
for circuit simulation. In: IEEE custom international circuits conference; 2004.

[16] Sallese Jean-Michel, Krummenacher Francois, Prégaldiny Fabien, Lallement
Christophe, Roy A, Enz C. A design oriented charge-based current model for
symmetric DG MOSFET and its correlation with the EKV formalism. Solid-State
Electron 2005;49:485–9.

[17] Atlas User’s Manual, version Y.2008.06.
[18] Enz Christian C, Vittoz Eric A. Charge based MOS transistor modeling. West

Sussex (England): Wiley; 2006.
[19] Prégaldiny F, Krummenacher F, Diagne B, Pecheux F, Sallese J-M, Lallement C.

Explicit modelling of the double-gate MOSFET with VHDL-AMS. Int J Numer
Model: Elec Network Dev Fields 2006;19(3):239–56.

[20] Oh Soo-Young, Ward Donald E, Dutton Robert W. Transient analysis of MOS
transistors. IEEE J Solid State Circ 1980;15(4):636–49.

[21] Wang H, Li X, Wu W, Gildenblat G, van Langevelde R, Smit GDJ, et al. A unified
nonquasi-static MOSFET model for large-signal and small-signal simulations.
IEEE Trans Electron Dev 2006;53(9):2035–43.

S. Sarkar et al. / Solid-State Electronics 54 (2010) 1421–1429 1429


