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In this paper, we address a physics based closed form model for the energy band gap (Eg) and the trans-
port electron effective mass in relaxed and strained [100] and [110] oriented rectangular Silicon Nano-
wire (SiNW). Our proposed analytical model along [100] and [110] directions are based on the k.p
formalism of the conduction band energy dispersion relation through an appropriate rotation of the Ham-
iltonian of the electrons in the bulk crystal along [001] direction followed by the inclusion of a 4 � 4 Lütt-
inger Hamiltonian for the description of the valance band structure. Using this, we demonstrate the
variation in Eg and the transport electron effective mass as function of the cross-sectional dimensions
in a relaxed [100] and [110] oriented SiNW. The behaviour of these two parameters in [100] oriented
SiNW has further been studied with the inclusion of a uniaxial strain along the transport direction and
a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along [001] with
the former one. In addition, the energy band gap and the effective mass of a strained [110] oriented SiNW
has also been formulated. Using this, we compare our analytical model with that of the extracted data
using the nearest neighbour empirical tight binding sp3d5s⁄ method based simulations and has been
found to agree well over a wide range of device dimensions and applied strain.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Emergence of Silicon Nanowires (SiNWs) as one-dimensional
transistors has generated a challenging task to investig ate two
of its fundamental band structure dependent electronic properties,
one being the energy band gap (Eg) and the other being the elec-
tron effective mass along the carrier transport direction which
drastically affects the carrier transport mechanism. However as
the experimental study of these parameters at the nanoscale
regime is extremely challenging, usually one relies on the atomic
level simulations, the results of which are at par with the experi-
mental observations.

In recent years, there has been an extensive study on the behav-
iour of Eg and the electron effective mass along different transport
orientations in both relaxed and strained SiNWs by using ab initio
and different empirical methods [1–5]. Albeit of these existing sim-
ulation results, there still lies a provocative challenge in developing
an analytical solution of these electronic parameters due to the
following reasons.
ll rights reserved.

hosh), isbsin@yahoo.co.in (S.
ra).
� enhanced electron mobility in relaxed and strained [100] and
[110] channel Si [6],
� crossing of primed and unprimed subbands in SiNW when k.p

formalism is used [3,4,7].
� closed form relation of Eg and electron effective mass in the

presence of strain, and
� standardizing energy parameters in TCAD software for applica-

tions in nanodevices [8].

In this work we use a degenerate k.p theory in a relaxed bulk Si
crystal to obtain the conduction band dispersion relation and
quantized subband energies at the C and off-C axes in a [100] ori-
ented SiNW together with 4 � 4 Lüttinger Hamiltonian dispersion
relation of heavy holes (HHs) and light holes (LHs) subbands. This
is followed by an appropriate rotation of the conduction band and
valence band Hamiltonian to explain the corresponding dispersion
relation and subband energies at both the axes of a [110] oriented
SiNW. By including the quantum confinement effects, we next for-
mulate the direct and indirect energy band gap and the transport
electron effective masses considering both the channel orienta-
tions. In case of [100] SiNW, we have studied the effect of a uniax-
ial and a biaxial strain on the Eg and the transport electron effective
mass. The uniaxial strain has been applied along the [100] direc-
tion while the biaxial strain consists of a hydrostatic deformation
strain along [001] together with the same uniaxial one. The effect
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of these strains together with a shear strain on the variation of
transport electron effective mass in a [110] oriented SiNW has fur-
ther been investigated. In this case, the uniaxial strain is along
[110] direction while the biaxial part contains the same hydro-
static one together with the [110] uniaxial. Both the tensile and
compressive strain is being associated with this uniaxial and biax-
ial strain to investigate the variation of these two parameters. We
have formulated the energy band gap and effective electron mass
in a (001) wafer along [100] and [110] channel directions, which
can also be extended for (001)/[111] case, as this is preferable to
control the carrier mobility both in the absence and presence of
strain. The analytical results of the band gap and the electron
transport effective masses in both relaxed and strained rectangular
SiNW along the former two channel orientations are further being
compared with the data extracted from the Atomistix ToolKit
(ATK) [9] which uses a nearest neighbour empirical tight binding
sp3d5s⁄ method. Our analytical model stands valid for the cases
where the strain is within 1% and the spin–orbit coupling does
not influence the conduction energy band.
2. Model and discussions

2.1. Importance of k.p approach over EMA

The importance of k.p method over EMA in the proper descrip-
tion of the energy band structure of Si lies in the fact that the non-
degenerate EMA equation used for [001] valleys fails to describe
the conduction band wrapping and the subband structure correctly
in (110) oriented Si films [6,10]. In particular, to correlate a com-
plete analytical conduction band dispersion relation with the ad-
vanced empirical tight binding model like sp3d5s⁄, a two band
degenerate k.p model should be used where a second conduction
band close to the first conduction band must be taken into account,
the two of which becomes degenerate just at the X point [10].
These are generally called as primed and unprimed bands respec-
tively. This phenomenon is however not arrested in the simple
non-parabolic EMA analyses [4]. Further the EMA also neglects
any change in the nature of the energy band gap with the applica-
tion of strain properly [7].

2.2. Relaxed [100] SiNW

Intrinsic relaxed bulk Si crystal consists of six equivalent con-
duction band minima located symmetrically along h100i at a dis-

tance of approximately k0 ¼ 0:15 2p
a0

� �
from the X point along C

direction in a three dimensional Brillioun zone, in which a0 is the
relaxed lattice constant of Si. The electron energy dispersion rela-
tion using this two band degenerate k.p model for relaxed bulk
Si crystal along [001] transport direction can be written as [10,11]

E�ðkÞ ¼
�h2k2

x
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in which E is the electron energy as measured from the bottom of
the conduction band minimum, ± represents the primed and un-
primed band (± at the subscript of the effective masses represents
their corresponding values at the primed and unprimed valleys),
the momentum matrix element identity [10,11] is p

m0
¼ �h0

m3�
,

1
M�
� 1

m1�
� 1

m0
. In case of unprimed band the effective masses are

m1� ¼ mt;m2� ¼ mt m3� ¼ ml and for the primed band the effective
masses are m1þ ¼ ml;m2þ ¼ mt ;m3þ ¼ mt where ml(=0.91m0) and
mt(=0.19m0) are the longitudinal and transverse electron effective
mass [2] in which m0 is the free electron mass, �h ¼ h

2p ;h is the
Planck’s constant and kx, ky and kz are the electron wave vectors
along x, y and z direction respectively. Neglecting the spin–orbit
interaction between the HH and LH with split-off holes, the hole
dispersion relation at the C point can be written as [12]

E ¼ Ak2 � B2k4 þ C2 k2
x k2

y þ k2
y k2

z þ k2
z k2

x

� �h i1=2
ð2Þ

where in this case, E is the hole energy as measured from the top of
the valance band maxima, ± indicates the HH and LH bands,
k2 ¼ k2

x þ k2
y þ k2

z and A = �(4.1 ± 0.2)(⁄2/2m0), jBj = (1.6 ± 0.2)(⁄2/
2m0) and jCj = (3.3 ± 0.5)(⁄2/2m0) are the inverse mass band param-
eters [12]. It appears that due to the occurrence of the square root in
Eq. (2), the HH and LH dispersion relation in general cannot be de-
scribed by the effective masses [10]. Keeping this in view, we as-
sume that the Lüttinger parameters A, B and C are independent of
the cross-sectional dimensions.

The energy band structure of SiNW whose electron transport is
along [100] direction is an involved task. The symmetry between
the six equivalent conduction band minima is now displaced due
to the difference in the effective masses as a result of the quantum
confinement of the carriers along the two lateral directions as also
conveyed through the earlier investigations done with the sp3d5s⁄

simulation method [1,2,13]. Because of this, the six conduction
band valleys are now grouped in a fourfold degenerate bands
(D4) at C-axis and twofold degenerate bands (D2) at off-C at a dis-
tance of about kxmin

� �0:37 p
a0

from the C-axis [13]. Due to the
higher quantized electron effective mass in the D4 valley along
the quantized directions, the corresponding energy minimum is
at a lower position than that of the D2 valley, thus making the
SiNW to be a direct band gap. With an increase in the SiNW
cross-section, this quantized effective mass converges to its
respective bulk value and the energy wave vector minimum tends
to an indirect band gap [3]. Thus in [100] SiNW structure, the en-
ergy band gap depends not only on the effective masses at the
band minima but also onto the subband energies along the con-
finement directions.

The [100] SiNW band structure diagram has been evaluated
using the ATK simulator and is shown in Fig. 1. Fig. 1a exhibits
the Si atomic configuration of a cleaved [100] with sp3 passivated
Hydrogen atoms. This has been done to remove the surface states
in the band gap region due to dangling Si bonds on the surface of
the nanowire. In this configuration we have considered the nearest
Si–Si and Si–H bond lengths to be 0.235 nm and 0.152 nm respec-
tively. The calculation of the energy band structure is done by
nearest neighbour sp3d5s⁄ tight binding method. In this method,
each atomic lattice of the configuration is considered by a sp3d5s⁄

basis and the spin–orbit interaction among them is ignored. In
addition, the k-point samplings of 1 � 1 � 21 grid were used with
mesh cut-off energy of 10 Hartree. The energy band structure of a
1.25 nm cross-sectional dimension of a [100] oriented SiNW has
been shown in Fig. 1b which clearly exhibits that the energy band
gap is a direct one at the C axis while the off-C valleys exhibits an
indirect energy band gap, a value higher that the former one, as al-
ready known from the existing studies [2,13]. Further, we notice
that the valley splitting even at room temperature at C and off-C
axis is significantly less. It should be noted that one may ignore
the importance of the valley splitting for the present analyses of
the determination of the band gap and transport effective electron
mass. By this, we mean that it is the lowest conduction splitted val-
ley and highest valance splitted valley which determines the gap
and the transport electron effective mass for that valley. Although
the valley splitting is extremely important for analysing mobility,
electrical resistance, etc. which incorporates the total number of
subbands and channels, however for the determination of energy



Fig. 1. (a) ATK built sp3 hydrogen passivated (100) SiNW plane of a [100] oriented channel of SiNW with cross-sectional thicknesses dy and dz along y and z directions
respectively and (b) energy band structure of [100] Hydrogen passivated SiNW of 1.25 � 1.25 nm2 cross-sectional area using ATK builder which uses a nearest neighbour
empirical tight binding sp3d5s⁄ method.
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band gap and the effective mass at the lowest valley one may
ignore the next higher valley together with the interaction be-
tween the two.

Analytically, the band structure of relaxed SiNW at C and off-C
axis along the [100] transport direction can be written by rotating
the Hamiltonian of [001] direction as

E�ðkÞ ¼
�h2ðkx þ kminÞ2
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Eq. (3) is the result of the assumption that the carriers obey the
periodic Bloch waves together with the van-Hove singularity con-
ditions occurring due to the carrier confinement along the kx and ky

directions. At this point it should be noted that although, the sub-
band energies of the two band k.p model cannot simply be ob-
tained from the ‘‘particle-in-a-box’’ formalism [14] however, to
achieve a simplistic closed form analysis considering a small cou-
pling between the bands [10] rather than the rigorous numerical
based approach, we consider the ‘‘particle-in-a-box’’ formalism.
Nevertheless, it should also be emphasised that in order to esti-
mate the electronic properties of nonlinear energy bands under
the two band or three band Kane’s type model, this approach is
useful, (for example see [11,15–18]). Under such ‘‘particle-in-a-
box’’ conditions, we have used the electron wave vectors to be

ky ¼ nyp
dy

� �
and kz ¼ nzp

dz

� �
, it is customary that we use ny = 1 and

ny = 1 for describing the lowest quantized wave vectors along the
respective transformed directions.

The use of Eq. (3) then leads to the lowest subband quantized
energies at both the valleys as

E1;1� ðkÞ ¼
�h2k2

xmin

2m3�
þ �h2

2m2�

p
dy

� �2

þ �h2

2m1�

p
dz

� �2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2

M�

p
dz

� �
p
dy

� � !2
vuut ð4Þ

In which kxmin
¼ 0 and �0:37 p

a0
at C and off-C valley respectively.

Assuming that the holes obey the same ‘‘particle-in-a-box’’ for-
malism, Eq. (2) leads to the ground state valance subband maxima
structure at the C-axis as
Ev
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Thus using Eqs. (4) and (5), the direct and indirect energy band gap
at C and off-C axis in the relaxed SiNW can be written respectively
as

EDirect
gNW

¼ Eg þ E1;1� þ Ev
þ

�� �� ð6Þ

and

EIndirect
gNW

¼ Eg þ E1;1þ þ Ev
þ

�� �� ð7Þ

where Eg(=1.12 eV) is the bulk value of the indirect band gap. It ap-
pears from Eqs. (6) and (7) that the band gap in the two confined
valleys at C and off-C depends on the corresponding quantum
numbers ny and nz. However, it should be noted that, physically
the energy band gap of 1D nanowire is the absolute energy differ-
ence between the lowest conduction subband and top most valance
subband level respectively.

Fig. 2 shows the variation of both the C and off-C axis band gap
in [100] oriented relaxed SiNW as function of the cross-sectional
dimension of equal thickness. It appears that as the thickness in-
creases, the effect of the quantum confinement on both the valleys
of the conduction subband and valence subband respectively plays
a crucial role in determining the magnitude of the energy band
gap. This can be understood as follows:

With the increase in the cross-sectional dimension the band gap
at both C and off-C axis decreases, however at a different rate due
to the difference in the effective masses in the respective valleys.
As the thickness increases above 4 nm, it is the band gap at C axis
that converges to 1.12 eV, which is essentially the difference be-
tween the conduction band minima and valance band maxima at
the C axis, where the bulk conduction band minima at k0 comes
implicitly in the degenerate band formulation. The off-C axis band
gap attains a value of 1.55 eV, a value higher than that of the for-
mer due to the presence of the non-zero factor in Eq. (4) as seen
from the Brillioun zone boundary which makes E1;1þ to attain a sat-
uration value of 0.49 eV. However, if it is considered as the origin of
the minimum of the valley, then E1;1þ converges to 0 eV and we get
the bulk result.



Fig. 2. Plot of the direct and indirect energy band gap using Eqs. (6) and (7) in
relaxed [100] SiNW as function of lateral wire-width dy = dz = d. The symbols are
our extracted simulation data which has been obtained by using the ATK by
passivating the Si atoms at the surface of the wire using Hydrogen atoms as shown
in Fig. 1 (b) followed by the use of a nearest neighbour empirical tight binding
sp3d5s⁄ method.

Fig. 3. Plot of the transport effective electron mass at the minima of the C and off-C
subband valleys using Eqs. (8) and (9) as function of wire thickness. The symbol
represents the extracted data from the energy band structure obtained using ATK
simulation.
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The effect of the carrier confinement leads to the discrete sub-
band energy levels for both the electrons and holes. In case of va-
lance bands, the HH and LH forms separate energy subband levels
due to the difference in their energy. Thus using this, it appears
that the first subband of Ev

þ for HH in a 1.5 � 1.5 nm2 SiNW is about
0.7 eV below compared to that of the maxima point of the HH in
case of bulk. However for the LH subband, Ev

� is about 2.7 eV below
the same. Thus, we see that the energy band gap difference in case
of SiNW should be considered from the lowest conduction subband
to the lowest HH subband, which is precisely meant by Eqs. (6) and
(7).

The electron effective mass along [100] direction in both the
valleys can then be written as

mx� ¼ m1� 1þ
ffiffiffiffiffiffi
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p
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� �2
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2m2�

p
dy

� �2
.

Fig. 3 exhibits the variation of the transport effective mass along
[100] direction in relaxed SiNW as a function of the cross sectional
dimension. In case of the lowest D4 subband at C, the transport
effective mass decreases and converges to its bulk value 0.19 m0

with the increase in the wire-width, thus confirming the result that
electrons in lowest subband carries a lighter transport effective
mass. In case of the lowest (D2) subband at off-C, the transport
effective mass decreases and converges to the bulk value
0.91 m0. Using this approach, we observe that our analytical model
for both the energy band gap and transport effective mass in both
the valleys agrees well with the extracted data from the sp3d5s⁄

model and exhibits a good trend as also depicted elsewhere [2,5].
The slight inconsistencies between the data and our analytical
model might be due to the complete negligence of the spin–orbit
interaction between the split-off holes and HH/LH in our model.
The other part of the error comes due to the omission of the inter-
action of the plane waves of Hydrogen on the Si-atoms due to
which the band structure of ultra-small thin SiNW gets affected.
2.3. Relaxed [110] SiNW

In case of relaxed [110] SiNW, the six conduction band valleys
are now grouped in D2 at C-axis and D4 at off-C at a distance of
about Kxmin

� �0:19 p
a0

from the first Brillioun zone boundary [13].
The higher quantized electron effective mass in the D2 valley along
the quantized directions leads to a corresponding energy minimum
at a lower position than that of the D4 valley and making the SiNW
to be a direct band gap which is diametrically opposite with re-
spect to the [100] oriented case. The [110] SiNW band structure
simulation has been evaluated using the ATK simulator using the
aforementioned similar procedure and is shown in Fig. 4a. The en-
ergy band structure of a 1.25 nm cross-sectional dimension of a
[110] oriented SiNW has been shown in Fig. 4b which clearly
exhibits that the energy band gap is a direct one at the C axis while
the off-C valley exhibits an indirect energy band gap. Further, we
see a sharp valley splitting both at C and off-C axis. This splitting
energy at both the axes is however largest for same cross-sectional
dimensions as compared with other channel orientation like [100]
and [111] [2]. It can be seen that in our present case for 1.25 nm
that this splitting energy at C axis is about 470 meV while at the
off-C axis this is about 91 meV.

Analytically, the band structure of relaxed SiNW in the [110]
coordinate frame of reference can be obtained by appropriately
rotating the bulk Hamiltonian following [19] for each pair of the
valleys. This leads to the off-C axis electron energy dispersion rela-
tion of the lowest subband, as measured from the Brillioun zone
boundary as
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in which m14 ¼ m24 ¼
2m1þm2þ
m1þþm2þ

, m34 ¼ m3þ , m�1
s4
¼ m�1

1þ �m�1
2þ and

M�1
4 ¼ m�1

1þ �m�1
0 for transport along [110] direction where, it

should be noted that in case of thin (110) oriented Si films, mt in
M�1 ¼ m�1

t �m�1
0 is the transport effective mass [10]. Eq. (10) is



Fig. 4. (a) ATK built sp3 Hydrogen passivated (110) SiNW plane of a [110] oriented channel of SiNW and (b) Energy band structure of [110] SiNW of 1.25 � 1.25 nm2 cross-
sectional area using sp3d5s⁄ method.
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the result of the same earlier assumption that the carriers obey the
periodic Bloch waves together with the van-Hove singularity condi-
tions occurring due to the carrier confinement along the trans-
formed Ky and Kz directions.

The use of Eq. (10) then leads to the lowest subband quantized
energy at the off-C valley as
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The expression for the energy dispersion relation for the twofold
conduction subbands at C for [110] SiNW can be written as
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The bulk energy dispersion relation for HH and LH using the trans-
formed [110] axis can respectively be written as

EðKÞ ¼ AK2 �
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Thus, Eq. (14) leads to the valance subband maxima structure at the
C-axis as
Ev
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Hence using Eqs. (13) and (15), the direct energy band gap at C for
the relaxed [110] SiNW can be written as

EDirect
gNW

¼ Eg þ E1;12 þ Ev
þ

�� �� ð16Þ

and using the Eqs. (11) and (15), the indirect energy band gap at off-
C will be

EIndirect
gNW

¼ Eg þ E1;14 þ Ev
þ

�� �� ð17Þ

Fig. 5a shows the variation of both the C and off-C axis band gap for
[110] oriented relaxed SiNW as function of the cross-sectional
dimension of equal thickness. With the increase in the cross-sec-
tional dimension, both the direct and indirect band gap follows
the same nature of decrement as exhibited in Fig. 2 of [100] ori-
ented SiNW, however at a different rate due to the difference in
the effective masses in the respective valleys. As the thickness in-
creases, it is the band gap at C axis that converges to 1.12 eV. The
off-C axis band gap attains a value of 1.19 eV, a value higher than
that of the former due to the presence of the non-zero factor in
Eq. (11) as seen from the Brillioun zone boundary which makes to
attain a saturation value of 0.07 eV. However, if it is considered as
the origin of the minimum of the valley, then E1;14 converges to
0 eV and we get the bulk result. Comparing Fig. 2 and Fig. 5a we
see that the band gap of [100] oriented SiNW is larger than that
of the corresponding [110] one for the respective valleys as also
similarly exhibited elsewhere [3,13].

The electron effective mass along [110] direction can then be
defined in the two valleys as

mx2 ¼
m12

1þ �h2m12
2M2

2

� �
p
dy
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and

mx4 ¼
m14

1þ �h2

2M2
4
n

n o ð19Þ



Fig. 5. (a) Plot of the direct and indirect energy band gap using Eqs. (16) and (17) in relaxed [110] SiNW as function of lateral wire-width dy = dz = d. The symbols are our
extracted simulation data which has been obtained by using nearest neighbour empirical tight binding sp3d5s⁄method. (b) Plot of the transport effective electron mass at the
minima of the C subband valley using Eq. (18) as function of wire thickness. The symbol represents the extracted data from the energy band structure obtained using ATK
simulation.
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for C and off-C valleys in which

n ¼ 1ffiffiffi
f
p 3K2

xmin
� p

dy

� �2

� 1
2f

�h2Kxmin

M4

 !2

K2
xmin
� p

dy

� �2
 !2

8<
:

9=
; where

f ¼ �h2k0

m3þ

p
dz

� � !2

þ �h2

2M4
K2

xmin
� p

dy

� �2
 ! !2

2
4

3
5:

Fig. 5b exhibits the variation of the transport effective mass of the
relaxed SiNW as a function of the cross sectional dimension. In case
of the lowest subband at C, the transport effective mass increases
and converges to its bulk value 0.19 m0 with the increase in the
wire-width. This is opposite to the behaviour arrested in the case
of [100] oriented SiNW.

2.4. Effect of cross-sectional shape

The analytical model as developed in this work for both the
rectangular channel orientations can also be compared to the re-
sults of the band gap of a circular SiNW under identical conditions
[4,20]. It should be noted that by fixing the reference frame to the
square cross-sectional SiNW (at 1 nm2, [20]), the maximum sepa-
ration in the energy scale of the energy band gap between the
square cross-sectional SiNW and circular cross-sectional SiNW is
less than 6%, if varied with cross-sectional dimension. However,
if varied with cross-sectional area, the separation is less than 1%
([4]). The separation of the energy band gap between the square
cross-sectional SiNW and triangular cross-sectional SiNW is less
than 38% (at 1 nm2, [20]), while if plotted with area, the separation
lies within 1% (at 1 nm2, [20]). The deviation between the effective
mass in square cross-sectional SiNW from that of circular is less
than 1% ([4], if varied with cross-sectional area). For triangular
case, this deviation is 22% ([20], if varied with cross-sectional area).

2.5. Strained [100] SiNW

Strain effects in bulk Si crystal along different directions have
been extensively studied in past few decades [21,22]. Recently
using the density functional theory, the effect of both uniaxial
and biaxial strain on the band structure of a [100] oriented SiNW
has been shown, where the modification of the positions of already
lifted D4 and D2 valleys due to the quantum confinement effects
has been considered [23]. This splitting of the valleys in relaxed
SiNW however is not arrested by EMA approach [4]. For our pres-
ent quantitative analysis, we take into consideration of a uniaxial
and hydrostatic strain along [100] and [001] directions respec-
tively. Fig. 6 schematically exhibits this situation on the conduction
and valance bands for both tensile (Fig. 6a) and compressive
(Fig. 6b) strains on a [100] oriented SiNW. In case of a SiNW, an
application of a tensile hydrostatic strain shifts up the average en-
ergy of the conduction band with respect to its six equivalent val-
leys. In addition, a uniaxial strain along [100] splits this
conduction band into D2 and D4. The position of these valleys
about their bulk relaxed value however, strictly depends whether
the strain is tensile or compressive. As shown in Fig. 6a the average
energy of these set of subbands under the tensile hydrostatic strain
along [001] shifts up by the same amount. However, the presence
of a uniaxial compressive strain along [100] direction makes D4 to
be higher in energy than that of D2 [23] as shown in Fig. 6b. In case
of valance bands, the HH and LH split as subband energy levels (Eq.
(5)) in which a tensile hydrostatic strain shifts up their respective
average position, while a uniaxial tensile strain shifts up the HH
subbands over LH subbands (Fig. 6a).

We now discuss a quantitative analysis of the energy band gap
and transport electron effective masses under the presence of a
biaxial strained [100] SiNW based on the degenerate k.p formal-
ism as stated earlier. Further, in case of the splitted valance bands,
we assume that the average position of the HH and LH subband al-
most coincides with the HH subband due to the higher effective
mass of the former. The appropriate electron energy dispersion
relation for strained bulk Si crystal along [100] transport can be
extended following [10] as
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in which dEc = Dd(ezz + exx) + Duexx is the strain induced shift of the
conduction band, Dd = �6 eV and Du = 7.8 eV are the dilation and
uniaxial deformation potential constants respectively, and e are



Fig. 6. Band alignment of the lowest conduction subband valleys at both C and off-C axes and valance subband using the degenerate perturbation theory under an
application of a biaxial strain on [100] SiNW for (a) tensile and (b) compressive strain. The D4 and D2 subband valleys in relaxed SiNW are the results of difference in effective
masses due to quantum confinement as arrested by sp3d5s⁄ method. The average of the HH and LH subband (as shown by the horizontal dotted line below) Ev

þ is assumed to
coincide with the Ev

þ for both the tensile and compressive cases due to higher effective mass of the former.

Fig. 7. Plot of the direct and indirect band gap as function of uniaxial and biaxial
strain along [100] oriented SiNW. Symbols are the results of the ATK simulations.
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the isotropic strain component [10,24]. Using Eq. (20) the subband
energies can then be written as
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In case of the valance subbands, the hydrostatic strain shifts the
average energy of the nanowire valance band edge from Ev

þ by an
amount Epav ðHHÞ ¼ av

2e
1�m

� 	
. This is further shifted to an amount

EHH ¼ �bve 3m�1
1�m

� 	
in the presence of a uniaxial tensile strain as

exhibited in Fig. 6a. In case of compressive strain, the Epav ðHHÞ is
shifted to an amount ELH ¼ 2bve 3m�1

1�m

� 	
as shown in Fig. 6b in which

av=2.46 eV and bv = 2.35 eV are the valance band deformation
potentials [22,25] and m = 0.37 is the SiNW Poisson’s ratio [26].
Thus, we see from the energy band diagram in Fig. 6a that the C axis
direct band gap in a biaxially tensile strained [100] SiNW is given
by

EDirect
gNW
ðe > 0Þ ¼ Eg þ Dþ D00 ð22Þ

and the indirect energy band gap at off-C assumes the form

EIndirect
gNW

ðe > 0Þ ¼ Eg þ D0 þ D00 ð23Þ

in which D ¼ Ee
1;1� , D0 ¼ Ee

1;1þ and D00 ¼ Ev
þ

�� ��� ðEpav þ EHHÞ where Epav

and EHH are both positive quantities. Similarly for compressive
strain, Eqs. (22) and (23) transforms as

EDirect
gNW
ðe < 0Þ ¼ Eg þ Dþ D00 ð24Þ

and

EIndirect
gNW

ðe < 0Þ ¼ Eg þ D0 þ D00 ð25Þ

for direct and indirect band gap respectively, where in this case
D00 ¼ Ev

þ
�� ��� ðEpav þ ELHÞ in which Epav is negative while ELH is positive

quantity.
The effect of strain on the band gap in [100] SiNW has been

exhibited in Fig. 7 for a 1.5 nm wire thickness. It appears that the
rate of change of the direct and indirect band gap are different
due to the difference in energy between Ee

1;1� , Ee
1;1þ , Epav , ELH and

EHH in both the regime of the strain. It should be noted that an in-
crease in the tensile strain decreases the energy of the Ee

1;1� sub-
bands while the HH subbands shifts towards the valance band
maxima position of the bulk Si. This marks a reduction of the band
gap as the tensile strain increases. In case of uniaxial compressive
strain, it is the Ee

1;1� subband valley which shifts up together with
LH, thus increasing the C axis band gap.

Further, we see that the direct band gap increases as the uniax-
ial strain becomes more compressive. However the off-C band gap
decreases with the increase in compressive strain. This remarkable
effect leads to the crossing over of the two subband valleys in the
very deep compressive strain zone. This essentially means that
there occurs a direct to indirect band gap transition in the deep
compressive zone and has also been exhibited numerically by Shiri
et al. [7]. It should also be noted that with the increase in the cross-
sectional dimension, the valley splitting difference between the
lowest conduction subbands at C and off-C axis decreases. Thus,
for higher dimensions, it appears that the transition from direct
to indirect band gap should occur at relatively less compressive
strain zone. However with the increase in the tensile strain the C
axis band gap decreases while the off-C band gap increases. This
shows that under uniaxial tensile strain, band gap remains direct
always.

The scenario changes when the uniaxial strain is combined with
the [001] hydrostatic strain. Under this biaxial strain condition,
the band gap remains almost invariant with respect to strain at
the C valley, while for the off-C valley it decreases when the strain
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increases from compressive to tensile zone, and has been com-
pared with the extracted sp3d5s⁄ data.

The transport electron effective mass under the uniaxial strain
can be written following Eq. (20) for C and off-C axis as

mx� ¼ m1� 1þ
ffiffiffiffiffiffi
r�
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where /e
� ¼ �h2

2m2�

p
dy

� �2
� dEc .

Using Eq. (26), the variation of the transport effective electron
mass at the lowest energy subband in C axis as function of strain
has been exhibited in Fig. 8. It appears from our analytical results
that the transport effective mass in C valley is a very slowly vary-
ing function with strain within the ± 1% zone which has also been
predicted quite satisfactorily by Sajjad et al. [27] through sp3d5s⁄

calculations.

2.6. Strained [110] SiNW

Using Eqs. (10) and (12) and including the off-diagonal shear
strain term together with the uniaxial and biaxial strain, the appro-
priate strained electron energy dispersion relation can be extended
following [10] as
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for off-C valley and
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Fig. 8. Plot of the transport effective electron mass as function of uniaxial and
biaxial strain at C valley. The symbol represents the extracted data from the energy
band structure obtained using ATK simulation.
for C valley in which D = 14 eV is the shear strain deformation po-
tential [10].

Using Eqs. (28) and (29), the subband energies can then respec-
tively be written as
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In case of the valance subbands, the hydrostatic strain shifts the
average energy of the nanowire valance band edge from Ev

þ by an
amount Epav ðHHÞ ¼ 2ave 1�2m

1�m

� 	
. This is further shifted to an amount

ELH ¼ �2bve 1þm
1�m

� 	
in the presence of a uniaxial tensile strain as

exhibited in Fig. 9a. In case of compressive strain, the Epav ðHHÞ is
shifted to an amount EHH ¼ bve 1þm

1�m

� 	
as shown in Fig. 9b. This is

in opposite to what has been observed in case of h100i uniaxial
tensile strain. Thus, we see from Eqs. (15) and (31) that the C axis
direct band gap in a biaxially tensile strained [110] SiNW is given
by

EDirect
gNW
ðe > 0Þ ¼ Eg þ Dþ D00 ð32Þ

while from Eqs. (15) and (30), the indirect energy band gap at off-C
has the form

EIndirect
gNW

ðe > 0Þ ¼ Eg þ D0 þ D00 ð33Þ

in which D ¼ Ee
1;12

, D0 ¼ Ee
1;14

and D00 ¼ Ev
þ

�� ��� ðEpav þ ELHÞ where Epav

and ELH are both positive quantities.
In case of compressive strain, Eqs. (32) and (33) transforms as

EDirect
gNW
ðe < 0Þ ¼ Eg þ Dþ D00 ð34Þ

and

EIndirect
gNW

ðe < 0Þ ¼ Eg þ D0 þ D00 ð35Þ

for direct and indirect band gap respectively, where
D00 ¼ Ev

þ
�� ��� ðEpav þ EHHÞ, in which Epav is negative while EHH is posi-

tive quantity.
Fig. 10 exhibits the dependency of the band gap on the strain for

a 1.5 nm wire thickness. We see that in this case there also exits
crossing over of the two subband valleys in a very high compres-
sive strain zone for both uniaxial and biaxial conditions as also ar-
rested by others numerically [7].

It should be noted that the transport electron effective mass is
independent of the uniaxial and biaxial strain in [110] oriented
SiNW [28]. Using Eqs. (28) and (29), we find analytically that the
transport electron effective mass under the presence of shear
strain in C and off-C axis to be
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Fig. 9. Band alignment of the lowest conduction subband valleys at both C and off-C axes and valance subband using the degenerate perturbation theory under an
application of a biaxial strain on [110] SiNW for (a) tensile and (b) compressive strain. The D2 and D4 subband valleys in relaxed SiNW are the results of difference in effective
masses due to quantum confinement as arrested by sp3d5s⁄ method. The average of the HH and LH subband (as shown by the horizontal dotted line below) Ev

þ is assumed to
coincide with the Ev

þ for both the tensile and compressive cases due to higher effective mass of the former.

Fig. 10. Plot of the direct and indirect band gap as function of uniaxial and biaxial
strain along [110] oriented SiNW. Symbols are the results of the ATK simulations.

Fig. 11. Plot of the transport effective electron mass as function of uniaxial along
[110] and shear strain at C valley. The effect of biaxial strain coincides with the
uniaxial one. The symbol represents the extracted data from the energy band
structure obtained using ATK simulation.
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Using Eq. (36), the variation of the transport effective electron
mass at the lowest energy subband in C axis as function of shear
strain has been exhibited in Fig. 11. The effects of uniaxial and
biaxial strain have also been exhibited in the same figure which
produces no change in the effective mass. We could not exhibit
the sp3d5s⁄ variation of the effective mass in both the channel ori-
ented direction due to the questionable accuracy of applying the
numerical tight binding model [29]. Our analytical model may find
useful in predicting the effective mass when more accurate simu-
lation technique is available.
2.7. Mobility

It should be noted that the main focus of the present work deals
with the effective mass and energy band gap of relaxed and
strained SiNW along different crystal orientations and cross-sec-
tions. However, we have discussed below the SiNW electron
mobility when varied with respect to cross-section and strain
(Fig. 12) by using a simple intra-subband acoustic-phonon scatter-

ing formalism as l ¼ e
kBT

ffiffiffiffiffiffiffi
2kBT
pm�

q
8d2�h2qv2

s

9m�D2
A

, where kB the Boltzmann’s

constant, T(= 300 K) the temperature, m⁄ the effective mass at the
respective valleys, q(=2.329 � 103 kg m�3) the Si mass density, vs

the sound velocity (= 8.4 � 103 ms�1 and 5.86 � 103 ms�1 along
[100] and [110] direction respectively) and DA(= 12 eV) is the
acoustic phonon scattering potential [30]. The mobility model in
this manuscript realises from only fact of the change of effective
mass under both relaxed and strained conditions. From Fig. 12a,
it appears that this mobility model exhibits a square-law variation



Fig. 12. Plot of the electron mobility for (a) relaxed and (b) strained SiNW.
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with the cross-sectional dimension. Fig. 12b shows the variation of
this mobility with strain. In case of [110] SiNW, the effective mass
at the C valley remains unchanged with both uniaxial and biaxial
strain which makes this mobility to be constant with strain. How-
ever for [100] direction, increasing uniaxial and biaxial tensile
strain has opposite variation on the mobility. As, it is understood
now that the main effect of increase of the electron mobility under
strained SiNW is due to the suppression of the intervalley phonon
(g-type and f-type) and surface roughness scattering mechanisms
[31], the detailed calculation of which perhaps will not result a
closed form solution that we intend to do in this work. However
as this model does not incorporate the convergence of discrete
model (nanowire within 1–4 nm square cross-sectional dimen-
sion) to its corresponding continuum model (above 4 nm cross-
sectional dimension), we have not shown its corresponding con-
vergence for 4 nm and beyond for [110] and [100] orientation.
But the mobility model that we have given in this manuscript
may of course give a hint to the corresponding trends in both re-
laxed and strained SiNW.

The results and the methodologies as carried out in this work
can be tuned further by modifying the nanowire dispersion rela-
tion by considering the valley splitting for the description of the
electron mobility and electrical resistance through the intra sub-
band transition. In addition for our present case, we did not con-
sider the tensile and compressive strain beyond ± 1% because of
the fracture issues in the strain induced silicon process technology
[32]. Besides, the inclusion of the spin orbit interaction and plane
wave function due to the Hydrogen passivation would certainly in-
crease the accuracy of our analytical results, although the qualita-
tive features of the band gap and the effective masses both in
relaxed and strained case would not change.

Finally, we wish to state that the methods as presented in this
work for the formalism of both the direct and indirect band gap
and the transport electron effective mass in the presence of strain
may also be useful in the determination of different band structure
dependent electronic transport properties in uniaxial ([111] direc-
tion) and biaxially ([111] and [001]) strained [111] channel
oriented SiNWs.
3. Conclusions

In this paper, we present an analytical technique to quantify the
direct and indirect energy band gap and transport electron effec-
tive mass in a [100] and [110] oriented relaxed and strained
SiNW. Using a degenerate perturbation theory, we investigate the
effect of the spatial, uniaxial and biaxial and shear strain on these
parameters. The analytical results of our proposed model for both
relaxed and strained SiNWs are in good agreement with the exist-
ing numerical models and with that of our corresponding data ex-
tracted from the nearest neighbour empirical tight binding sp3d5s⁄

method. Further, the positions of the conduction subband valleys
under the presence of strain are in accordance with the simulation
results exhibited elsewhere.
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