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a b s t r a c t

In this work, a physically based analytical quantum threshold voltage model for the triple gate long chan-
nel metal oxide semiconductor field effect transistor is developed. The proposed model is based on the
analytical solution of two-dimensional Poisson and two-dimensional Schrödinger equation. Proposed
model is extended for short channel devices by including semi-empirical correction. The impact of effec-
tive mass variation with film thicknesses is also discussed using the proposed model. All models are fully
validated against the professional numerical device simulator for a wide range of device geometries.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Triple gate metal oxide field effect transistors (TG MOSFET)
have attracted much attention for downscaling CMOS (comple-
mentary metal oxide semiconductor) technology upto 10 nm chan-
nel length owing to its superior gate control over the channel and
high current drive capability [1]. As it is difficult to dope uniformly
the ultra thin body (Fin) of such transistors, undoped (or lightly-
doped) body is used, and the threshold voltage is adjusted by
choosing proper gate material. In such transistors, the short chan-
nel effect (SCE) is controlled by the device geometry and electro-
static integrity improves with the number of gates. The effect of
quantization of electronic energies becomes significant for channel
width and height below 10 nm [1] and thus it is extremely impor-
tant to consider quantum effects in their threshold voltage models.
Efforts have been made to include quantum effects in MOSFET
models [2]. To the best of our knowledge, analytical quantum
threshold voltage model for TG MOSFET has not yet been reported
apart from some numerical simulation results [3,4].

In this work, we propose a physically based closed form quan-
tum threshold voltage model for long channel TG MOSFET. The
2D Poisson equation and 2D Schrödinger equation is solved in
the weak inversion region to obtain the threshold voltage model.

The threshold voltage model is then extended for short channel de-
vices using empirical correction. Impact of effective mass variation
with film thicknesses are also discussed. The proposed models are
then validated against data obtained from the numerical device
simulator Atlas [5] for wide range of device architecture.

2. Quantum threshold voltage modeling

Fig. 1 shows the schematic diagram of an undoped body TG
MOSFET. This device can be conceived as composition of a symmet-
ric double gate (SDG) and a single gate Silicon On Insulator (SOI)
transistor in perpendicular direction. In ultra thin body SDG MOS-
FET, quantization of electron energy is mainly due to the structural
confinement. However, in single gate devices it is electronic in nat-
ure. Thus modeling of quantum threshold voltage in TG MOSFET is a
tedious task. The Poisson–Schrödinger equations have to be solved
consistently to obtain potential distribution and inversion charge
density. But in the weak inversion regime, for undoped body, one
can approximate the Poisson equation as the Laplace equation by
ignoring the inversion charge density and thus decouple the two
equations [6]. In the development of threshold voltage models,
mid-gap metals have always been used as gate materials.

The Poisson (Laplace) equation in Silicon region for a triple gate
long channel undoped body device is given by

d2U
dx2 þ

d2U
dy2 ¼ 0 ð1Þ
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with the following boundary conditions
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Here U is the electrostatic potential, Vg is the gate voltage, H and W
are the height and width of the Silicon film respectively. �si is the
permittivity of the Silicon, Cox and Cbox are the gate oxide capaci-
tance and box capacitance respectively. Tox is the gate oxide thick-
ness and L is the channel length.

Substituting v(x,y) = U(x,y) � Vg in Eq. (1) we get
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Using v(x,y) = G(x) H(y) we can transform Eq. (6) into

G00

G
¼ �H00

H
¼ k2 ð11Þ

which leads to the following general forms of solutions

GðxÞ ¼ M sinhðkxÞ þ N coshðkxÞ ð12Þ
HðyÞ ¼ P sinðkyÞ þ Q cosðkyÞ ð13Þ

The boundary condition given in Eq. (10) forces the constant P
to be zero. Hence v(x,y) can be re-written as

vðx; yÞ ¼ ðA sinhðkxÞ þ coshðkxÞÞB cosðkyÞ ð14Þ

where A = M/N and B = QN are two new constants. Using the bound-
ary condition given in Eq. (9) in Eq. (14) we get the following eigen
value expressions
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The above relation gives infinitely possible values for l and
hence we obtain a series solution for v(x,y) as
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The coefficient An and Bn are obtained by using the boundary
condition given in Eqs. (7) and (8) in Eq. (17) and could be written
as
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Finally the electrostatic potential (U = v + Vg) in the Silicon re-
gion is obtained as

U ¼ Vg
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Fig. 2 shows a good agreement between our potential model with
Atlas simulated data in the weak inversion region. It is worth noting
that only first series term is used in Eq. (22) to predict the potential
for thin devices accurately.

As mentioned earlier, in a TG MOSFET the energy quantization is
both structural as well as electronic confinement in nature. Struc-
tural confinement arises due to the thinness of the Silicon film as
electrons get confined between two Si/SiO2 interfaces. Electronic
confinement is due to the confinement of electrons in a quasi-trian-
gular potential well formed at the interface by the conduction band
of Silicon. Along the x direction confinement of electrons is mainly
electronic and along the y direction, it is mostly structural in nature.
It is seen from Fig. 2, the potential variation is negligible across X–Y
plane. In this work we approximate the total energy quantization as
purely structural in nature in both x and y directions. This approx-
imation holds quite good for long channel devices. The energy lev-
els can be computed by solving the following Schrödinger equation

Fig. 1. (a) Schematic of triple gate transistor and (b) band diagram perpendicular to
the gate in Y direction.
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where Ecc is given in terms of Si energy bandgap (Eg) as

Ecc ¼
Eg

2
� qU ð24Þ

Potential distribution obtained in Eq. (22) is too complicated to
use in Schrödinger equation in order to obtain simple analytical
solution. Therefore we approximate the actual potential well as
the square potential well shown by the checked lines in Fig. 1b.
In the square potential well, bottom represents the minima of con-
duction band energy (Eco) at x = H/2 and y = 0 and can be given as

Eco ¼
Eg

2
� qUðH=2;0Þ ð25Þ

Consequently the Schrödinger equation gets modified into
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Eq. (26) can be solved by standard variable separable technique
[7] and its solution W and E under parabolic band approximation
could be given as
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Here �h = h/(2p), h is the Plank’s constant, q is the elementary charge,
W is the wave function and E is the energy of the electron wave. In
Silicon, there are six ellipsoidal valleys with mt and ml as the trans-
verse and longitudinal effective masses, where ix and iy are positive
natural numbers. In Eqs. (27) and (28), masses (mx and my) are the
effective masses along x and y directions respectively. In TG transis-
tor energy quantization is two-dimensional in nature, i.e., along x
and y direction as shown in Fig. 3. The energy valleys 1 and 2 have
effective masses ml and mt along x and y directions. On the other
hand energy valleys 3 and 4 have effective masses ml and mt along
x and y directions and valleys 5 and 6 have effective mass mt in the
quantization directions. The energy reaches a minimum for a max-
imum mass as found in Eq. (28). For Silicon with six energy valleys,
we have thus two lower energy valleys, two middle energy valleys
and two higher energy valleys respectively. Hence the charge per
unit length per valley is given by

Q ¼
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Using N1D as the one dimensional density of states and f (E) as
the Fermi–Dirac function Eq. (29) leads to
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Here mz is the mass of the valley perpendicular to the direction of
quantization. The charge Eq. (30) is difficult to solve. However in
the weak inversion regime, the Fermi level is found to be much be-
low the conduction band energy. Hence, using Boltzmann statistics
the integrated charge could be approximated as
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Using Eqs. (28) and (31), the total integrated charge could be re-
written as
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Fig. 4 shows the population of electrons in each subband and
the distribution of subbands in the channel region. The first sub-
script in the energy denotes the valley (1–3 for lower, middle
and higher valleys respectively) and the second subscript denotes
the energy level in that valley. Thus solid, horizontal and vertical
lines indicate the lower, middle and higher valleys respectively.
It is observed that the charge decays with increase in energy levels
in each valley. It is also seen from Fig. 4 that only one energy level

Fig. 2. 2D plot showing potential distribution in X–Y plane at z = L/2 at a gate
voltage of 0.3 V. Here H = 7 nm, W = 7 nm, and L = 1 lm. Broken lines represent
Atlas simulation and solid lines represent the model.

Fig. 3. Energy valleys in Silicon
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each in lower, middle and higher energy valleys is sufficient to pre-
dict the charge accurately. Hence only one energy level is used in
the further analysis.

Threshold voltage for undoped body devices is defined [8,9] as
the gate voltage when the integrated charge becomes equal to
the critical threshold charge (QT = 5 � 1024 qWH cm�1). Using Eq.
(32) the threshold voltage is obtained as

VT ¼
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2qþ kT
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where q is given by
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3. Results and discussion

Fig. 5 shows the charge distribution plot at gate voltage of 0.5 V.
The charge distribution along y-axis is plotted for various x values.
The keyword 2DXY.SCHRO is used in Atlas to involve the two-
dimensional Poisson–Schrodinger Solver. The keywords NUM.DIR-
ECT along with SP.DIR are used to select the valleys with appropri-
ate effective mass [5]. Fig. 6 represents the plot of total integrated
charge with the gate voltage. It is seen from the figure that thresh-

old voltage increases with the decrease in film thickness because of
energy quantization.

Eq. (32) is used to obtain the integrated charge with only one
energy level and one series term. Fig. 7 shows the plot of probabil-
ity density function (W2) of electrons for first two energy levels.

In literature there is no standard value for the threshold charge
(Q T). Some authors [10] have equated the threshold charge to ther-
mal charge. However, we have found by numerical simulation that
the threshold voltage obtained by using the thermal charge some-
times (depending on device geometry) lies in the strong inversion
regime and thus over predicts the threshold voltage. In this work
we first extract the threshold voltage from classical simulation of
Id � Vg characteristics by linear interpolation method for wide
range of device architectures. Corresponding to the extracted
threshold voltage, integrated charge at virtual cathode is computed
for each device and the average charge is taken as the threshold
charge which is 5 � 1024 qWH cm�1. Note that for using the pro-
posed model for compact modeling purpose, one does not need
to repeat the above mentioned numerical simulation exercise.
Same value of the threshold charge is applicable to all practical de-
vice geometries for obtaining accurate value of the threshold
voltage.

In Fig. 8 black and grey colours show the variation of threshold
voltage with film height and width respectively. When the film
width is lesser than the film height, the device behaves more like
a symmetric double gate MOSFET. On the other hand, when the
film height is lesser than the film width, the device behaves like
a single gate SOI MOSFET. As for the same dimensions the thresh-
old voltage of symmetric double gate MOSFET gives lower thresh-

Fig. 4. Population of electron concentration in each subband at Vg of 0.3 V for a long
channel device having W = 5 nm and H = 7 nm. Solid, horizontal and vertical lines
indicates the lower, middle and higher valley respectively.
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Fig. 5. Charge distribution plot for long channel TG MOSFET along y-axis for
different x values at Vg = 0.5 V having H = 3 nm, and W = 7 nm. Symbols represent
Atlas simulation and lines represent the model.

Fig. 6. Plot of integrated charge with gate voltage for different film heights at
width = 5 nm. Symbols represent Atlas simulation and lines represent the model.
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H = 7 nm.
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old voltage compared to SOI transistor, the black line goes above
the grey line after attaining equal film height and width. Dotted
line shows the variation of classical threshold voltage with film
height at W = 3 nm. It is seen from the figure that the difference be-
tween classical and quantum threshold voltage increases with de-
crease in the film height due to the quantum effects.

Physical modeling of threshold voltage for a short channel TG
device is a difficult task mainly due to (i) difficulty in obtaining
the analytical solution of the 3D Poisson (Laplace) equation and
(ii) the confinement cannot be assumed to be fully structural in
nature. In this work we have, however, been able to extend the
long channel model to short channel devices (for low drain volt-
age) by the empirical relationship:

VTðLÞ ¼ VT � 1:6Vbi
WH

L2

� �m

ð38Þ

where Vbi is the build in potential in a p+ � i diode. Here m is the fit-
ting parameter which depends only on the film width and takes the
values 2, 1.95, 1.75, and 1.5 for film widths W = 9 nm, 7 nm, 5 nm,
and 3 nm respectively. Fig. 9 shows the variation in threshold volt-
ages with width and height of the film at channel length of 20 nm at
low drain voltages. Eq. (38) is used to obtain the threshold voltage
plot in Fig. 9. Fig 10 shows the plot with variation in threshold volt-
age with film widths at film height of 9 nm for different channel
lengths. Vertical spacing gives the short channel effect. It is ob-
served that the short channel effects are quite accurately captured
by the empirical relationship.

So far in the discussion, we assumed the value of the effective
masses to be equal to the value of bulk Silicon effective masses.

However the values of effective masses change with film thickness.
For a cylindrical body Silicon nanowire transistor, having a diame-
ter d, the change in effective mass could be formulated as a func-
tion of d by following [11] Eq. (39)

m�l;tðdÞ ¼ m�l;tð1Þ 1þ al;t

d
þ bl;t

d2

� �
ð39Þ

where al,t and bl,t are the fitting parameters having the values al = 0,
at = 0.68, bl = 0.28, and bt = 0.87. m�l;tð1Þ denotes the effective mass
in bulk Silicon. In this work we approximated the value of equiva-
lent nanowire diameter to be equal to (W + H)/2. In Fig. 11 dotted
line shows the variation of threshold voltage if we use the constant
bulk effective mass and black line shows the variation of threshold
voltage if we use effective mass obtained using Eq. (39). The figure
shows that the threshold voltage is low when we consider effective
mass dependence on device geometry rather than assuming it to be
a constant.

4. Conclusions

A physically based analytical quantum threshold voltage model
for a long channel triple gate MOSFET is developed and verified
against professional numerical simulator. The proposed model,
based on the solutions of Poisson and Schrödinger equations, is
capable of predicting the threshold voltage for ultra thin body de-
vices. Model is extended for short channel devices using empirical
correction. The impact of effective mass variation with channel
thickness is also discussed.

Fig. 8. Variation of long channel quantum threshold voltage with film height/film
width. Symbols and lines represent the Atlas quantum simulation and the model
respectively. Black and grey colour indicates the plot when width is held constant
with varying height and height is held constant with varying width respectively.
Dotted line shows the variation of classical threshold voltage with film height at
W = 3 nm.

Fig. 9. Variation of quantum threshold voltage with film height and width for
channel length L = 20 nm. Symbols and lines represent the Atlas simulation and
model respectively.
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Fig. 10. Variation of quantum threshold voltage with film width for various channel
lengths at H = 9 nm. Symbols and lines represent the Atlas quantum simulation and
model respectively.
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Fig. 11. Variation of long channel quantum threshold voltage with film width at
different effective mass at H = W. Solid and dotted line shows the variation of
quantum threshold voltage if bulk and effective mass obtained by Eq. (39) is used in
threshold voltage model.
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