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H I G H L I G H T S

! Semi-analytic solution of lattice thermal conductivity of the monolayer MoS2 is proposed.
! The in-plane and the out-of-plane acoustic modes are considered.
! Closed-form expressions of the mode specific heat capacities have been formulated.
! Effective scattering includes the phonon-boundary scattering, along with the intrinsic one.
! The model could be useful to look into the electro-thermal behaviour of two dimensional TMDs.
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a b s t r a c t

We report, a detailed theoretical study on the lattice thermal conductivity of a suspended monolayer
MoS2, far beyond its ballistic limit. The analytical approach adopted in this work mainly relies on the use
of Boltzmann transport equation (BTE) within the relaxation time approximation (RTA), along with the
first-principles calculations. Considering the relative contributions from the various in-plane and out-of-
plane acoustic modes, we derive the closed-form expressions of the mode specific heat capacities, which
we later use to obtain the phonon thermal conductivities of the monolayer MoS2. Besides finding the
intrinsic thermal conductivity, we also analyse the effect of the phonon-boundary scattering, for different
dimensions and edge roughness conditions. The viability of the semi-analytic solution of lattice thermal
conductivity reported in this work ranges from a low temperature (T∼30 K) to a significantly high
temperature (T∼550 K), and the room temperature (RT) thermal conductivity value has been obtained as

− −34.06 W m K1 1 which is in good agreement with the experimental result.
& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Molybdenite (MoS2) which belongs to the family of two di-
mensional (2D) transition-metal dichalcogenides (TMDs) has
gained a significant research interest in the past few years, spe-
cially due to its inherent finite bandgap value [1–3]. MoS2, which is
generally semiconducting in nature, shows a direct bandgap of
1.8 eV for monolayer [1,4]. Thus, it can effectively be used as the
alternative channel material in FET devices [1,5]. Besides, owing to
its distinct properties like broken inversion symmetry leading to
spin–orbit coupling [6], higher mechanical strength [7] etc., the
use of monolayer MoS2 can be appealing in many applications in
the field of spintronics and flexible electronics [8].

Now, the materials used for such high performance devices
require to have higher values of thermal conductivity (κ), so that
the excess heat generated can efficiently be spread out [9]. But,
due to the low group velocities of acoustic phonons and extremely
short intrinsic phonon mean free path, the κ of monolayer MoS2 is
significantly lower than that of single layer graphene [10,11].
However, its application as a 2D thermoelectric material is very
promising, as the TE FOM (thermoelectric figure of merit) can be
improved largely, by tuning the κ value, [11,12] along with a very
high Seebeck coefficient (which is already reported in [13]).

So far, the various electrical properties of the monolayer and
the few-layer MoS2 had been studied extensively [1,14–19]. On the
contrary, a very few had been reported until now, to describe their
thermal behaviour [8–11,20,21]. In [11], the phonon thermal con-
ductivity of monolayer MoS2 sheet (obtained from the molecular
dynamics simulations) had been found as 1.35 W m"1 K"1,
whereas in [9], using ab initio calculations, Li et al. had reported a
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κ value of 83 Wm"1 K"1 at room temperature. Li et al. further
demonstrated, a 30% enhancement in κ, with the increase in
sample size from μ1 m to μ10 m. However, their results were ob-
tained for the samples with complete rough edges. [9]. Besides, in
[20], we find a κ value ∼23.2 W m"1 K"1 at RT, which had been
calculated using the combination of density functional perturba-
tion theory (DFPT) and non-equilibrium Green's functions (NEGF)
approach. Cai et al. had manifested that for monolayer MoS2, the
Grüneissen parameter values for all the modes (whether, it is
acoustic, or optical) are always positive. But, their study does not
include any consideration of extrinsic scattering mechanism, such
as, phonon-boundary scattering which plays a critical role in
precisely determining the thermal conductivity at low tempera-
tures [20]. Apart from those theoretical calculations, we also find a
measured value of κ ∼34.5 W m"1 K"1, for a suspended mono-
layer MoS2 flake as reported in [10].

Owing to this large variance in the results, so far reported in
literature, here we are motivated to present a comprehensive
study on the lattice thermal conductivity of the monolayer MoS2.
Moreover, with the increasing use of TMDs in various fields of
nanoelectronics, it becomes essential to develop an analytical
model of κ which will not only impart quick estimation of heat
transfer, but also be useful to know the thermal stability of the
material. In the following, we first develop the closed-form ex-
pressions for the specific heat of various acoustic modes, under the
approximations of Debye model. Subsequently, we derive the
mode dependent lattice thermal conductivities of monolayer MoS2
with the help of those closed-form expressions. Such an analytical
approach for finding the κ can also be very useful to set insight
into the electro-thermal behaviour of the two dimensional TMDs
(in this case, monolayer MoS2) through any standard CAD tool. Our
result shows the value of κ as 34.06 W m"1 K"1 at RT, which is in
close agreement with the experimental finding of [10], as well the
other numerical results.

2. Methodology

In this study, the first-principles calculations are carried out
using ATK (Atomistix Tool Kit) DFT with the local density ap-
proximation (LDA) exchange correlation (along with Perdew and
Wang functional) and double zeta polarized basis set. For the
hexagonal unit cell, the lattice constant is opted as 3.16 Å which is
consistent with the measured value as reported in [22]. Along the
c-axis, a vacuum region greater than 16 Å has been maintained to
avoid the interactions that arise while calculating the periodic
boundary conditions [9,20]. The phonon dispersion curves for the
unit cell of MoS2 are obtained using frozen phonon calculations
which requires the formation of a dynamical matrix of the system.
To construct the dynamical matrix, the system is automatically
repeated to create a larger cell (in this work × ×9 9 1), which is
controlled by a repeat parameter [23]. Besides, the density mesh
cut off is set to 75 Hartree. The phonon band structure of the
monolayer MoS2 obtained from the ab initio calculations is shown
in Fig. 1.

In [10], Yan et al. reported the temperature dependent Raman
spectra of the suspended monolayer MoS2 for various cryostat
temperature values ranging from 100 K to 320 K. Furthermore,
they observed two sharp peaks ∼385 and 405 cm"1 which cor-
respond to the E g2

1 mode and the A g1 mode (denoting the in-plane
and the out-of-plane vibrations) [5,10]. Since the phonon group
velocities of the acoustic modes are significantly higher than those
of the optical modes, thereby while determining thermal con-
ductivity of the monolayer MoS2, we have considered only the
three acoustic modes, which are two in-plane (longitudinal
acoustic (LA) and transverse acoustic (TA)) modes and one out-of-

plane acoustic mode (ZA mode). Besides, as illustrated in [20], the
values of the Grüneissen parameters for the LA, TA, and ZA modes
are much larger than those of the optical modes, suggesting the
weaker anharmonicity of the optical modes.

3. Calculations of lattice thermal conductivity of the mono-
layer MoS2

Thermal conductivity, one of the basic properties of any ma-
terial relating to the thermal transport, depends strongly on the
temperature whenever we opt for a wide range of temperature
variation. Now, considering the in-plane κ to be isotropic for
monolayer MoS2 [9,11], we can write [10,24]

∫∑κ δ τ= ( )
( )λ

λ λ λA
C v dq1 ,

1

q
ph eff

0
,

2
,

max

where κ represents the thermal conductivity due to the lattice
vibration taking into account the contributions from various
acoustic modes (λ). δ is the thickness of the monolayer MoS2, q is
the magnitude of the wave vector, A is the molar area of the unit
cell of MoS2 with a lattice constant of a¼3.16 Å. Moreover, λCph, , λv ,
and τ λeff , denote the mode dependent values of specific heat,
phonon group velocity and effective scattering respectively. Be-
sides, it is worth a mention here that the intrinsic κ of the
monolayer of MoS2 is actually dominated by the phonons (because
the charge carriers contribute significantly less) [20].

3.1. Closed-form analytical expressions of the mode dependent Cph

In this subsection, we will try to estimate the lattice heat ca-
pacity of the monolayer suspended MoS2, which comes mainly
from the contribution of phonons [25,26]. Specific heat, which
shows how the internal energy (U) of the vibrating crystal varies
with temperature (T) change, can be defined at constant volume or
at constant pressure [27]. Under the approximations of Debye
model, the internal energy of the system can be defined as

∫ ρ ω ω( ) = × ( )ω ωℏ

−ωℏ⎛
⎝⎜
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kBT

, where ρ ω( ) is the phonon

density of states (DOS), ωmax is the upper cut-off frequency re-
lating to highest phonon energy and

−ωℏ⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
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1

exp 1
kBT

denotes the Bose–

Einstein distribution function [26–28]. Besides, ℏ is the reduced
Planck constant and kB is the Boltzmann constant. Now, taking the

Fig. 1. Phonon dispersion curves (acoustic as well as optical modes) for the
monolayer MoS2.
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volumetric heat capacity ( ∂
∂
U
T
) into account, we can express the

specific heat contributed by the modes (λ) ∼ LA, TA as [25,27]
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where the 2D phonon density of states for the LA and TA modes

had been replaced by ρ ω( )λ ¼ π× =
π ω

ω
π( ) ( )λ

λ
λ

⎡⎣ ⎤⎦q2A
d dq

A
v2

1
/ 22 2 , with

help of the linear approximation of the dispersion relation, that is,
ω ( ) =λ λq v q. Besides, λv is the mode specific average group ve-
locity. However, for the out-of-plane acoustic mode (λ ∼ZA), the
dispersion relation is obtained as ω α( ) =λ q qd

2, where the αd can
actually be fitted from the phonon dispersion curve of ZA branch
(as shown in Fig. 1). Thereby, the phonon density of states for the
ZA mode becomes ρ ω( )λ ¼

π α( )
A

4 d
, and the specific heat contributed

by ZA mode is calculated as [25,27]
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The Debye temperature used for finding the enthalpy and heat
capacity of bulk MoS2, can be found as 300 K, as reported in [29].
But such a value of Debye temperature, which is obtained from the
low temperature specific heat, may not be accurate, if we only
consider the acoustic modes [30]. For the monolayer of MoS2, we
derived the mode dependent Debye temperature with help of the
upper cut-off frequencies for various acoustic modes, and it may

be expressed as π=λ λ
ℏ λT v2D k

N
A,

B
, where the upper cut-off

frequencies for the LA, TA and ZA modes are related to the total
number of vibrating states ( λN ) as ω π= ( )λ λ λv N A4 /max,

2 . More-
over, with information of phonon DOS, λN can be obtained using
the relation ∫ ρ ω ω= ( )λ

ω
λ λ

λN d
0

max, . Hence, the total lattice heat
capacity of the monolayer suspended MoS2, considering the con-
tributions from the individual modes, can be found as

= ( + + )C C C Cph ph ph phLA TA ZA [28,31]. The upper cut-off frequency
values used for the specific heat calculation of different modes are
taken as ×4.08 10 Hz13 , ×3.15 10 Hz13 , and ×3.29 10 Hz13 ,
whereas the average group velocity values are found to be 1325 m/
s, 915 m/s, and 972 m/s for LA, TA and ZA modes respectively.
However, the analytical solutions of (2) and (3) are available at the
two extreme limits, that is, for ⪢ λT TD, and ⪡ λT TD, [26,32]. Under the
approximations of the Debye model, with the linear and isotropic
phonon dispersion, Cph will approach a constant value at higher
temperatures (denoted by the classical Dulong–Petit limit in case
of 3D crystals), whereas at low temperatures it shows a ∼T3 de-
pendency for bulk and generally a ∼T n dependency (where

≤ ≤n1 2) for 2D crystals [31,32]. But, here in this work, our aim is
to study the thermal behaviour of the monolayer MoS2 in the low-
to-intermediate range of temperature values which lie ±250 K
around the room temperature (300 K). In order to do so, we have
derived the following closed-form expressions (as illustrated in
(4) and (5)), which work fine for the entire temperature range of
30–550 K:

π π= × × × × × ( )
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where h denotes the Planck constant, besides
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, . C1 and C2 are used as model parameters

(calibrated against the numerical results) with the values π4.6 and
0.05 for the LA mode and π3.8 and 0.05 for the TA mode. For, the
ZA mode with α = × −2.11 10d

7, we have found
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As shown in Fig. 2(a), considering the temperature variations from
30 K to 550 K, the Cph calculated using (4) and (5), is closely
matching with the value of that obtained by summing the nu-
merical solutions of (2) and (3). Fig. 2(b) shows the relative con-
tributions of the LA, TA and ZA modes to the total heat capacity.
We find, at RT, both the LA and the TA modes contribute almost
equally to the total Cph, whereas the relative contribution of the ZA
mode is significantly less (∼50% of the individual LA or TA mode).
However, owing to the combined effect of the individual modes,
we observe that the total lattice heat capacity of the monolayer
MoS2 shows a T1.1 dependency at low temperatures
( ∝ ∼C T , 50 Kph

1.1 or below).

Fig. 2. (a) Temperature dependence of the total phonon specific heat of monolayer
MoS2. (b) Mode specific contributions of the three acoustic modes to the Cph (cal-
culated using (4) and (5)).
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3.2. Mode specific group velocities, ( )λv q

Although, while calculating Cph under the approximations of
Debye model, we have taken a linear dispersion relation for LA and
TA modes, and a quadratic dispersion relation for the ZA mode, but
looking into the exact phonon dispersion relations (derived from
the first-principles calculations), we can see that neither the in-
plane acoustic modes are perfectly linear in between the Γ − M
points of the Brillouin Zone (BZ), nor the out-of-plane is truly
quadratic. Therefore, for more accurate results, we utilized the
following semiempirical relations which reproduce the ω ( )λ q (in
'Hz') for the three acoustic modes, as well as determine the mode
specific group velocities ( )λv q .

( )ω = ℏ − + − × ( )
−e q q110 110 0.059 10 , 6LA

2 3

( )ω = ℏ − + − × ( )
−e q q66 71 0.44 10 , 7TA

2 3

( )ω = ℏ − + + − × ( )
−e q q q330 240 3.7 0.054 10 , 8ZA

3 2 3

where e denotes the charge of an electron. Fig. 3(a) shows the
variation of ω ( )λ q , whereas Fig. 3(b) illustrates the corresponding
change in ( )λv q along the Γ–M direction of the BZ. It can be seen
that the maximum velocities for the LA and TA modes are 2650 m/s
and 1710 m/s respectively, near the Γ point and those reduces
monotonically as we route towards the M point of BZ. For the ZA
mode, the group velocity is maximum (1490 m/s) around the mid of
the BZ.

Thus, with help of Eqs. (6)–(8) which are reproducing the ω ( )λ q ,
( )λv q analytically, and the closed-form Cph as formulated earlier, we

can compute (1), to obtain the phonon thermal conductivities for
the LA, TA and ZA modes. Now, for the purpose of the calculation
of κ we have determined the τ λeff , following the approach as de-
scribed in the next subsection.

3.3. Phonon scatterings

To determine the τ λeff , , we start with the consideration of an
ideal crystal without having any crystal imperfections due to de-
fects, impurities, etc. In such case, the phonon mean free path will
mostly be limited by phonon–phonon scattering [25,33]. Out of
the two phonon–phonon scattering processes, the Normal pro-
cesses conserve the total crystal momentum as well as follow the
energy conservation law. On the other hand, for the Umklapp
processes of phonon–phonon scattering the crystal momentum is
not conserved [33]. It is generally presumed that the momentum-
conserving Normal processes play no significant and direct role in
determining the thermal conductivity, whereas at room tem-
perature and above, the Umklapp scattering plays the dominant
role in finding out the thermal conductivity of the crystalline solid.

Now, a thermal conductivity determined by taking the anhar-
monic phonon scatterings into account can be treated as the in-
trinsic thermal conductivity. According to the theory described by
Klemens [34], for any 2D layer, taking only basal plane phonon
propagation into account, the mode dependent relaxation time
due to anharmonic scattering (which is essentially considering the
Umklapp processes) can be found from the relation [21,34]:

( )τ τ
γ ω

≃ = ×
ℏ × × ( )

λ λ
λ λ

λ λ

′M v T
T

,
9

anh ump
D

, ,

2
,

2 2

where ′M is the mass of the unit cell of MoS2 and γλ represents the

mode dependent Grüneissen parameter values. For a 2D material
like MoS2, the acoustic and the optical mode Grüneissen para-
meter values can be found from the plots of ‘Fig. 3 (a) and (b)’ as
illustrated in [20]. Near the Γ point, the Grüneissen parameter
values of LA, TA and ZA modes are obtained as 25.3, 58.6, and
159.7 respectively. However, as we route towards the M point of
BZ, those values get substantially reduced (∼1.018 for the LA mode
and ∼2.00 for the TA and ZA modes).

Moreover, the τ λanh, , which is calculated from (9), can therefore
be utilized to find out the intrinsic phonon mean free path (Λint) of
monolayer MoS2 ( Λ τ= ×λ λvint anh, ). In comparison with the single
layer graphene, Λint of monolayer MoS2 is much smaller. Con-
sidering the entire variation of Λint along the Γ–M direction of the
BZ, we find that the Λint is ∼ 17.2 nm near the Γ point for the LA
mode, whereas that for the TA and ZA modes are ∼ 8.32 nm and ∼
1.82 nm respectively. Apart from that as the monolayer MoS2 sheet
considered in this study is of the dimensions, L¼1 μm and
W¼1 μm, thereby we expect the thermal transport inside the

Fig. 3. (a) Variation of ωλ with q as obtained from (6)–(8). (b) Mode specific ( )λv q of
the acoustic modes within the Γ–M points of the BZ.
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sample to be diffusive. At low temperatures, the phonon-boundary
scattering which is an extrinsic scattering mechanism, mostly af-
fects the thermal conductivity. It is very critical to precisely de-
termine the effect of boundary scattering, specially for small-
structures where κ starts depending upon the physical dimensions
of the device [25]. Taking into consideration the heat flow parallel
to the MoS2 sheet, we can determine the phonon-boundary scat-
tering as [9,34]

τ = × −
+ ( )λ

λ ⎛
⎝⎜

⎞
⎠⎟

v
L

p
p

1 1
1

,
10B,

where the amount of diffuse phonon scattering from the edges is
determined using a specularity parameter (p) that can take any
value in between 0 and 1 (for a completely rough edge, →p 0, for
the extremely smooth edge, →p 1) [9,34]. As reported in
[21,35], the specularity parameter can be expressed as,

ς( ) = ( − × × )p q qexp 4 2 2 , where the parameter ς includes in-
formation regarding the root-mean-square height of the surface
roughness, as well as the angle of incident phonon at any parti-
cular point on the rough edge [35].

Moreover, to incorporate the effects of crystal imperfections,
such as defects occur during the fabrication of the suspended
monolayer, PMMA residues, or oxidation of the MoS2 sample, one
should take the defect scattering into account while determining
the τ λeff , . However, such a study is due for the monolayer MoS2, as
that requires further experimental evidences of thermal con-
ductivity measurement. Hence, considering the intrinsic as well as
the phonon-boundary scattering phenomenon, we can calculate
the τ λeff , (with help of the Matthiessen's rule) as,

τ τ τ= +
( )λ λ λ

1 1 1 .
11eff anh B, , ,

4. Results and discussions

In [8], Jo et al. estimated the value of p within the range of 0.3–
0.6 for a few layer sample. However, here in this work, for the
monolayer suspended MoS2 sample (having, dimensions L¼1 μm
and W¼1 μm), we have set the p value as 0.4. Besides, from the
details as illustrated in Fig. 4(a) and (b), we find that how κ varies
with the change in dimensions, as well as p (at RT). At T¼300 K,
we find that the impact of edge roughness becomes more severe
as we lower the dimension (in this case, L) of the sample below ∼
50 nm. For all such cases (Fig. 4(a)), the phonon-boundary scat-
tering mean free path actually becomes comparable with the
physical dimensions of the MoS2 sheet.

Next, considering the κ model as depicted earlier (with the
upper cut-off frequency values for the LA, TA, and ZA modes as

× ×4.08 10 Hz, 3.15 10 Hz13 13 , and ×3.29 10 Hz13 respectively, and
δ = × −6.033 10 10 m), we have plotted the variation of thermal
conductivity with the change in T (Fig. 5). To validate the lattice
thermal conductivity value as computed here, we consider the
experimental results of [10], where the suspended monolayer
MoS2 flake (which is placed on the Si3N4/SiO2/Si perforated grid
like substrate) of diameter 1.2 μm, obtains a κ value of ±34.5 4
Wm"1 K"1 at RT.

Now, as shown in Fig. 5, the κ of the suspended monolayer
MoS2 obtained using the model described in this work, closely
matches with the measured result of [10] as well as the other
theoretical calculations [21]. At RT, κ is calculated as
34.06 Wm"1 K"1, in which the relative contributions of the LA, TA
and ZA modes are ∼63%, ∼17%, and ∼20% respectively. However,
for a low temperature, such as, 40 K, the relative contribution of
the LA mode reduces to ∼48%, whereas the contribution of the ZA

mode increases to ∼32%. Besides, it is important to notice that the
effect of the anharmonic scattering becomes dominant in de-
termining the κ, as we increase the temperature beyond 60 K.

Fig. 4. (a) Variation of thermal conductivity with the change in L. (b) p dependency
of κλ at RT for a sample with dimensions L¼W¼1 μm.

Fig. 5. Calculated thermal conductivity of the monolayer MoS2 (represented by the
solid line), along with the relative contributions of LA, TA and ZA modes (dotted
lines).
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5. Conclusion

In conclusion, we have presented a comprehensive study on
the phonon thermal conductivity of a suspended monolayer MoS2,
with the very basic objective of finding an analytical approach for
determining the κ. For the purpose, we have developed closed-
form expressions of the mode specific heat capacities, as well as
derived the analytical solutions of mode dependent group velo-
cities. Later, with help of those analytic expressions, we have
computed the phonon thermal conductivities of the monolayer
MoS2 which works for the entire temperature range of 30–550 K.
Besides modelling the intrinsic κ, we have also analysed the effects
of edge roughness on thermal conductivity. Considering the re-
lative contributions of LA, TA and ZA modes, the κ of the mono-
layer MoS2 has been calculated as 34.06 W m"1 K"1 (at room
temperature), which shows a good agreement with the experi-
mental result.
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