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We present a simplified theory of the effective momentum mass (EMM) and ballistic current-voltage
relationship in a degenerate two-folded highly asymmetric bilayer graphene nanoribbon. With an increase
in the gap, the density-of-states in the lower set of subbands increases more than that of the upper set.
This results in a phenomenological population inversion of carriers, which is reflected through a net
negative differential conductance (NDC). It is found that with the increase of the ribbon width, the NDC

also increases. The population inversion also signatures negative values of EMM above a certain ribbon-
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width for the lower set of subbands, which increases in a step-like manner with the applied longitudinal
static bias. The well-known result for symmetric conditions has been obtained as a special case.

© 2010 Elsevier B.V. All rights reserved.

The high Fermi velocity of electrons in bilayer graphene (BG)
has recently found potential applications in the realm of meso-
scopic devices and in certain aspects of particle physics that are
achievable in table-top experiments [1]. The first principle stud-
ies [2] and tight-binding model [3] applied on BG by incorporating
all important interlayer interactions show that the conduction and
valance bands slightly overlap near the Fermi level. These out-
comes exhibit that BG should be a semimetallic material rather
than a zero band gap material. A BG can also be tuned near
the Dirac-point between two degenerate conduction and valance
bands. This band gap tuning can be externally controlled by ap-
plying either a transverse electric field [4] or by selective doping
in the two coupled hexagonal lattices with an A’-B type stacking
pair [5]. In either case, this results in a potential difference be-
tween the layers, which may be called symmetric or asymmetric,
depending whether the difference is zero or non-zero respectively.
For investigating two port carrier transport properties, the selective
doping technique is mainly preferred, since in such cases, there is
no need of a transverse electric field.

Whether the carrier transport in BG, or in any other material, is
diffusive or ballistic at a certain temperature, is completely deter-
mined by the carrier’s mean free path (MFP) length at that temper-
ature. Ballistic transport is said to occur when this length becomes
greater than the material dimension. Otherwise it is called diffu-
sive transport. In the past few years, investigations on both the bal-
listic and diffusive transport properties of carriers in BG have been
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done for their possible applications in nanoelectronics, spanning
from the transistors to long interconnects in ultra-small integrated
systems [6-15]. Extensive analyses of Hwang and Das Sarma [16]
and Kubakaddi [17] suggest that although BG has an extremely
nonlinear band structure, the overlap integral can be avoided since
the Coulomb potential does not play a role in the determination of
the phonon matrix element. Their arguments fit well in explain-
ing electron mobility at room temperature in BG which is about
10° cm?V~!s~1, Their results can also be experimentally realized
[18,19].

One such transport property is the carrier effective mass which
is strongly connected to carrier mobility and is known to be
one of the most important physical quantities used in the anal-
ysis of semiconductor devices under different physical conditions
[20]. Although there are various definitions of the effective elec-
tron mass [21], it is the effective momentum mass (EMM) that
should be regarded as the basic quantity [22] for the description
of the carrier transport of the conduction band electrons with ar-
bitrary band non-parabolicity [23]. However, with increasing band
non-parabolicity, the EMM becomes a function of electron energy.
Under carrier degeneracy, only the electrons at the Fermi surface
participate in the conduction process, and hence the investigation
of the EMM corresponding to the Fermi level is of interest. It may
also be noted that the Fermi energy is, in turn, determined by the
carrier dispersion relation and degeneracy, and thus these two fea-
tures explain the behavior of the EMM in degenerate materials.

In a BG sheet, carriers are confined in a 2D plane. A further
structural confinement along the lateral direction transforms the
2D system to a 1D system resulting in BG nanoribbon (BGN). Re-
cent fabrication method sono-chemically cuts chemically derived
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graphene sheets [24]. This results a BGN to be of several micro-
meters in length having a width of 20 nm or less. However, other
fabrication method involves the lifting off the BG using a scotch
tape and adhering onto an oxidized silicon substrate [25]. Using
the electron beam lithography, contact pads are formed by a metal
liftoff process using Ti/Au as the contact metal. A second layer of
lithography defines nanometer-wide channels. The BGN thus pre-
pared, finds potential applications in the area of chip-interconnects
providing a substantially lower resistance than copper wire having
unity aspect ratio [12]. Further, the ballistic electron thermal con-
ductance per unit width of graphene nano-ribbons can be smaller
than those of corresponding single-walled carbon nanotubes [26]
which may lead to a better thermoelectric material. In case, if
the width of the BG is few nanometer, the resulting lateral car-
rier localization leads to the van Hove singularity condition, which
generates a discrete set of energy eigenvalues. When a longitudi-
nal static bias is applied, the Fermi energy is lowered. With the
increase in the bias, a chronological crossing of the Fermi level
over the discrete set of subbands takes place and singularities in
the variation of the EMM are thus expected for such a case.

Nevertheless, it appears from the literature that the EMM for a
highly asymmetric BGN has yet to be investigated in the presence
of carrier degeneracy. In this Letter, we present a simplified the-
oretical formulation of the EMM and a ballistic two port current—
voltage relationship in an asymmetric BGN within the framework
of tight binding (TB) formalism. We also report the ballistic -V
relation which signatures a phenomenological negative differential
conductance (NDC) effect by considering the incorporation of the
subbands due to the splitting of both sets of conduction bands.

We start with the use of TB theory by assuming each mono-
layer of graphene has totally I, zigzag chains with I, atomic sites
on each chain for an asymmetric BG sheet [8]. This leads to the
electron Hamiltonian near the K point as [4,8]
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in which I, and I, are the width and length of the BG, A = ¢1 —¢2,
¢i's are the onsite potentials on each monolayer, 7 {= th(—i% +
%)} is the Berry phase momentum operator [4], vg is the
Fermi velocity and y is the interlayer coupling constant. Mod-
eling the BG as a two-coupled hexagonal lattice with a stacking
pair of A’-B type, the use of Eq. (1) and a Bloch-type eigen-

states W (x, y) = (YA, Vg, Yar, Wa), Where, ¥(x, y) = i (y)e'*, in
which, i = A, B, A/, B’ leads to the following equations:
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in which E is the electron energy as measured from the bottom
of the conduction band in a vertically upward direction. Taking the
values of ¢ and ¢4 from Egs. (3) and (2) and substituting them
in Egs. (4) and (5) respectively, results in
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Fig. 1. Energy dispersion surface of an asymmetric BG for A =0.25 eV.
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Assuming the potentials to be constants, the solution is given by
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in which, k* =k + k3. For a symmetric case (A =¢1 — ¢ =0),
Eq. (8) becomes
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which at k =0 converges to either E =0 or E =+y for both E >0
and E < 0 energy bands. This convergence is in accordance with
the well-known result [27] and proves the mathematical compati-
bility of our theory.

For an asymmetric BGN, we invoke the van Hove singularity

condition ky = % for the Bloch type wavefunction along the

y direction, which results in
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in which, ny (=1,2,3,...) are the van Hove singularity quantum

numbers along the y direction respectively. It readily appears that

Eqgs. (8) and (10) generate two sets of degenerate subbands namely

EY, EX, E7 and EZ. Fig. 1 exhibits the energy spectrum for an

asymmetric BG considering the lower conduction (E}) and higher

valance band (EZ). The constant energy surfaces are the circles in

the ky-ky plane. With an increase in asymmetry, the gap opens as
shown in Fig. 2. For an asymmetric BGN, Eq. (10) transforms to
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Fig. 3(b) exhibits the energy subband structure of an asymmetric
BGN. It appears that there is no inter-mixing of the conduction



2852

energy subbands because of both Ei and ET. Also for ly =5 nm,
there is a considerable opening of the gap about the zero level.

Using Eq. (3) and the spin and valley degeneracies (gs = gy = 2)
[28], the density of states in an asymmetric BGN for both the up-
per (+) and lower (—) set of subbands can be derived as
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Fig. 2. E-k dispersion relation for a BG for different A.
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in which H is the Heaviside step function and the subband en-
ergies are given by the condition ki =0, in which E is replaced
by Eniy )

For a highly asymmetric case (A = y), Egs. (11) and (12) re-
duce to

1 y? nywhve\2 y4 72
kE= —|E24+ 1 (X)) 4 [2F2y2_ L 13
x th[ T ( L, v (13)

and

2 -1/2

iy,/252_7] ]H(E—E,ﬂfy) (14)

Fig. 3 exhibits the energy dispersion curve of a BGN. On com-
paring Figs. 2 and 3, it appears that the presence of quantization
along the lateral direction smoothens the bulging nature of the ET
subbands. We also see from Fig. 3(b) that the presence of the van
Hove singularity has a striking effect on the energy subband struc-
ture of an asymmetric BGN. This is reflected in the fact that with
an increase in A, the lower set of subband energies starts decreas-
ing in magnitude rather than increasing. This is directly opposite in
nature to the E* conduction band as shown in Fig. 2. Also, it ap-
pears that with decreasing A, the energy difference between the
alternate subbands of both the lower and upper set diminishes.
Fig. 4 also signatures this fact. For both symmetric and asymmet-
ric systems, the presence of y and A has a profound effect on the
density-of-states function in a BGN. From Fig. 4, it appears that
for a symmetric BGN, states are more available in the ET rather
than the ET subband; however, with the opening of the gap, states
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Fig. 3. Energy dispersion curves of 5 nm asymmetric BGN for (a) A = 0.4 eV at different subbands and (b) with varying A for the lowest EZ and E* subband.
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Fig. 4. Density of states as function of electron energy for 5 nm BGN at different A.

in the ET subband increase. In this Letter, we report this phe-
nomenological population inversion in an asymmetric BGN, which
may find remarkable applications in the area of optical electronics
and NDC systems.

From Fig. 2, we see that in BG, a change in A does not appre-
ciably change the magnitude of Ei subband energies at k =0 as
compared to that of ET energies. However, a lateral confinement
for e.g., of 5 nm, opens a gap of about 0.2 eV about the 0 energy
line at k = 0. It may be noted that due to the presence of two con-
duction bands in a BG, an extremely large transmission coefficient
for a highly asymmetric diffusive BGN might be achieved when the
carriers are transferred from the source to the drain. This is due to
the splitting of both the conduction energy bands into a number
of subbands.

Using Eq. (14), the carrier concentration can for this present
case be written as

nm:/NTD(E)f(E)dE—i—/Nl_D(E)f(E)dE (15)
E, Eny

where f(E) is the Fermi-Dirac occupation probability factor.
The bottom of the subband energies for the highly asymmetric
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Fj(n) is the one parameter Fermi-Dirac integral of order j [29]
and Ef is the Fermi energy. The EMM in general can be written as
[22,23]
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Using Egs. (13) and (17), the EMM in a highly asymmetrical
(A =) BGN along the longitudinal direction can be derived as
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Fig. 5. Plot of the EMM for highly asymmetric BGN versus lateral width having
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Fig. 6. Plot of the EMM for BGN versus drain bias for njp =108 m~! at T =300 K.
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However, for a symmetric case,

L (Er) = —[1 e } (19)
Ve Er

Eq. (19) exhibits the fact that the EMM in lower subband can
become negative if Er < y, where, y = 0.4 eV [27]. This has been
exhibited in Fig. 5. For a heavily doped symmetric BGN, Ef > y
and in such a case, the EMM in both the subbands approaches
m*(Er) = 0.176 Epmg, where, mg is the free electron mass. The
variation of the EMM as a function of ribbon-width has been
shown in Fig. 5. Fig. 6 exhibits the variation of the EMM as a func-
tion of drain bias. With an increase in the ribbon or well width,
the Fermi energy is reduced, and this, in turn, reduces the EMM in
both the lower and upper set of subbands. Moreover, the EMM for
an asymmetric BGN can become larger than that of the asymmet-
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Fig. 7. Plot of the negative differential conductance in BGN for nip = 108 m~! at

T =300 K.

ric BG, which is also a direct signature of quantum confinement.
The rates at which the EMM decrease are determined by the con-
stants of the energy spectra of graphene. As one increases drain
bias, step dependencies are expected due to the crossing over of
the Fermi level by size-quantized levels. For each coincidence of a
size quantized level with the Fermi level, there is a discontinuity
in the density-of-states function resulting in a quantum jump. The
appearance of humps in the curves of Fig. 6 is due to the redistri-
bution of the electrons among the quantized energy levels when
the size quantum number corresponding to the highest occupied
level changes from one fixed value to another. With large ribbon-
width, the height of the steps decreases and the EMM approaches
its BG value. It appears that the carriers in the lower set of sub-
bands possess a lower EMM. Hence, when in the diffusive regime,
the contributions to electron mobility in BGN can mainly be due
to them. For A = 0 m** exhibits negative values until Ef =y. In
such a case, m** =0 and m+ _2y/v ~ 0.411mg. The physical
reason behind the lower mass m*" is because of the increase in
the available states (or population inversion) in the lower subband
band due to the opening of the gap.

The current law for an 1D ballistic system for the present case
using Natori’s model [30] can be written as

Mymax E
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kgT
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which simplifies to
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where, nf = ,{BLT[EF +evp — Eniy] and nl = kBLT[EF — Eniy]. Using
Egs. (16), (21) and allied equations, Fig. 7 exhibits the current-

voltage characteristics of a highly asymmetric BGN. The direct sig-
nature of population inversion is exhibited in Fig. 7, where we see
that NDC occurs when the drain voltage is increased. With the in-
crease in the lateral width, the drain current increases. When the
temperature is high enough, the first two terms in the equation of
nliD dominate; however, as the temperature tends to zero, all the
rest of the other terms dominate in the determination of the car-
rier Fermi energy. It may be noted that the dual peaks in Fig. 7 are
due to the singularities governed by Eq. (16) for the two sets of
subbands.

At this point, we note that we have not considered the many
body effects in this simplified theoretical formalism. Our simplified
approach will be useful for the purpose of comparison when meth-
ods of tackling the formidable problem after inclusion of these
effects for the present systems appear. The inclusion of the said ef-
fects would certainly increase the accuracy of the results, although
the qualitative features of the EMMs and the current-voltage char-
acteristics in a highly asymmetric BGN as discussed in this Letter
will not change in the presence of the aforementioned effects.

The variation in the EMMs and the NDC effect in the current-
voltage characteristics as presented in this Letter reflect a direct
signature of the application of an asymmetrically biased BGN in
optical and transferred electron devices, where resistances can be
controlled by opening the gap. The theoretical results as given here
would be useful in analyzing various other experimental data re-
lated to this phenomenon. Finally, we can state with conviction
that this theory can be used to investigate the effective elec-
tron mass, and other different diffusive transport coefficients of an
asymmetric BGN operated under the influence of an external pho-
ton field.
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