

In general, we can reduce the Sampling rate by any national no Quality of the fitter H(3) determines the quality of the o/p. Stretched veroions of

X (e ju L/M) govern the

X (e ju L/M) govern the

X (e ju L/M) govern the

time domain meaning of L/M.

L > M is very much possible

Focussing on the example

Transition bandwidth = IT/3

normalized tran. bu. = IT/3 = 1

(Af)

For an equinipple design,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

1-8,

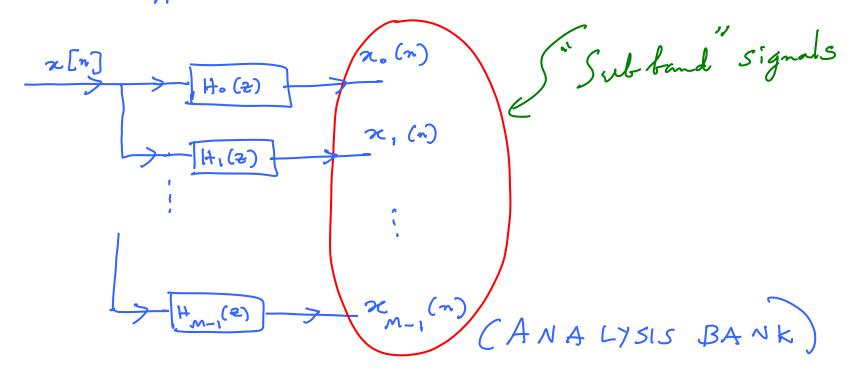
1-8,

1-8,

1-8,

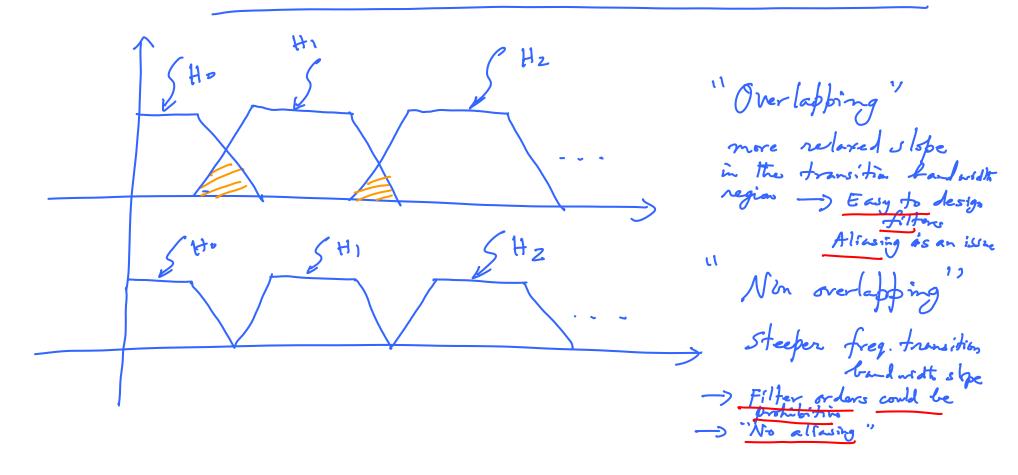
1-8,

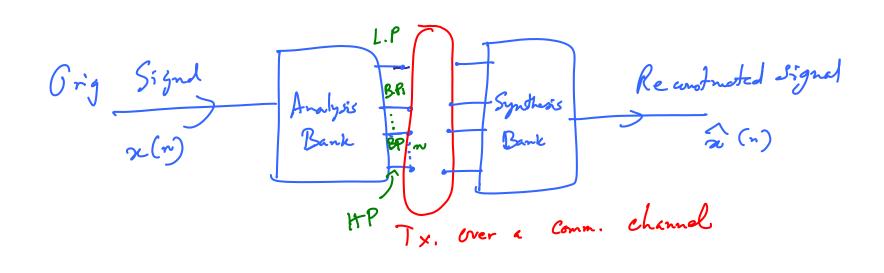
1-8,

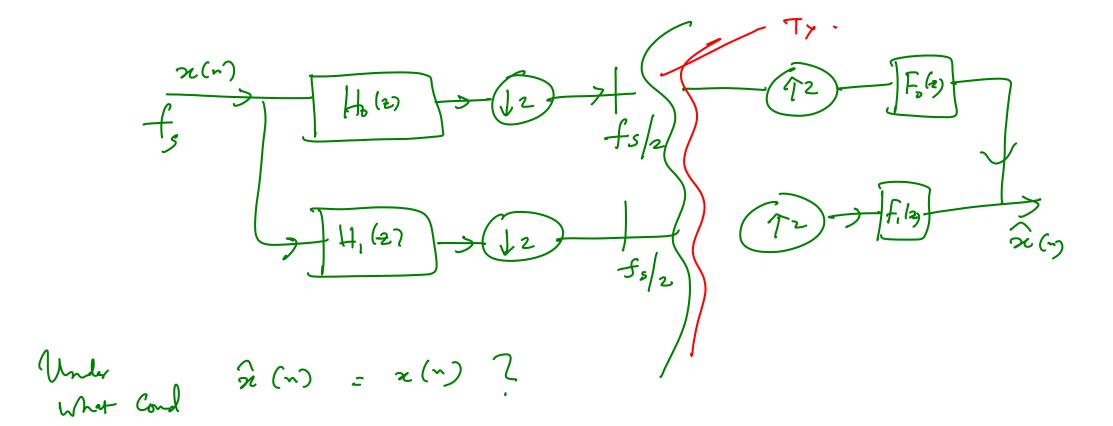

1-8

band width

Suppose $\delta_1 = \delta_2 = 0.01$ for an equivipple follow, $\xi_1 \Delta f = \frac{1}{6}$ $N \approx 11$ (91 th order filter)


Digital Filter Banks


A digital filter bank is a collection of filters with as Common i/p & a common o/p.



What could be the nature of freq. responses for $H_i(Z)$

DFT as a simplest fitter bank

The DFT matrix
$$(N \times N)$$
 is such that

 $\omega_{N} := \left[\begin{array}{c} \omega_{N} \end{array}\right] \quad \omega_{N} = e^{-j 2\pi N} N$
 $\chi(k) := \left[\begin{array}{c} \omega_{N} \end{array}\right] \quad \omega_{N} = e^{-j 2\pi N} N$
 $\chi(k) := \left[\begin{array}{c} \omega_{N} \end{array}\right] \quad \omega_{N} = e^{-j 2\pi N} N$
 $\chi(k) := \left[\begin{array}{c} \omega_{N} \end{array}\right] \quad \chi(k) \quad \omega_{N} \qquad (DFT)$
 $\chi(m) := \left[\begin{array}{c} 1 \\ N \\ k = 0 \end{array}\right] \quad \chi(k) \quad \omega_{N} \qquad (DFT)$

The entry in the k th row k k th column is k .

 $\chi(k) := \left[\begin{array}{c} \omega_{N} \end{array}\right] \quad \chi(k) \quad \omega_{N} \qquad (DFT)$

The entry in the k th row k k th column is k .

 $\chi(m) := \left[\begin{array}{c} \omega_{N} \end{array}\right] \quad \chi(k) \quad \omega_{N} \qquad (DFT)$

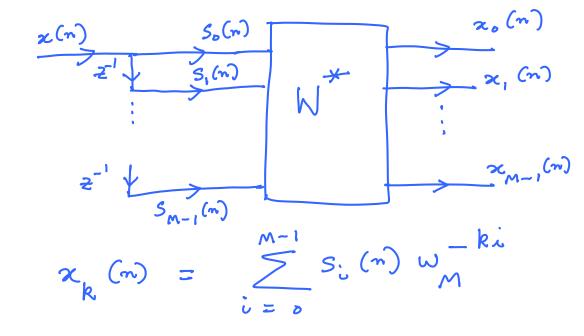
The entry in the k th row k th column is k .

$$N = 2$$

$$W_2 = \begin{cases} -j\frac{2\pi}{2} & 0.0 \\ -j\frac{2\pi}{2} & 1.0 \end{cases}$$

$$e^{-j\frac{2\pi}{2}}$$
 0.1

 $e^{-j\frac{2\pi}{2}}$ 1.1


 $e^{-j\frac{2\pi}{2}}$ 1.1

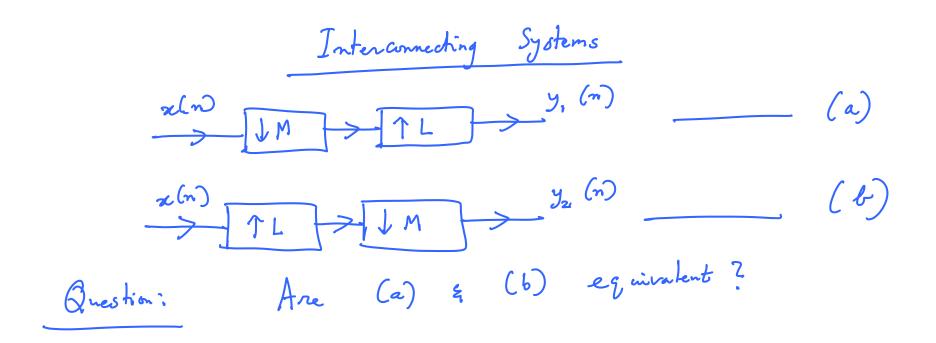
high pres

$$1, (1 \rightarrow 1+ z^{-1}(LP))$$

 $1, -1 \rightarrow 1- z^{-1}(4P)$

From the definition of W, we can interpret DFT as a filter bank

Consider the sequence x(n) from which we generate M sequences $S_i(n)$; i=0,1,...,M-1 by passing x(n) through a delay line such that $S_i(n) = x(n-i)$



This is like the IDFT without a scale factor of 1/M.

Jaking Z- transforms, $X_{k}(z) = \sum_{i=1}^{M-1} S_{i}(z) w_{M}$ The DFT system is like a filter But $S_{i}(z) = Z^{-i} \times (z)$ bank with analysis filters H, (2) $\chi_{k}(z) = \sum_{k=0}^{M-1} z^{-k} \omega_{M} \times (z)$ $= \sum_{k=1}^{M-1} \left(\frac{1}{2} \omega_{k} \right)^{-1} \times \left(\frac{2}{2} \right)$ $X_{k}(z) = H_{o}(z) \times (z)$ where $H_{k}(z) = H_{o}(z) = H_{o}(z) = H_{o}(z) = H_{o}(z)$

Obtain the mag. freq response of $H_R(2)$ and plot them Zxercise; HINT: Verify: $\left| \frac{\sin \left(M \omega / 2 \right)}{\sin \left(\omega / 2 \right)} \right| = \frac{\sin \left(M \omega / 2 \right)}{\sin \left(\omega / 2 \right)}$ H_R ($e^{j\omega}$) = H_o ($e^{j}(\omega - 2\pi k/m)$) — 2 Use 1 4 2 to shetch the freq. responses.

Time domain descriptions of multirate filters $y(n) = \begin{cases} \sum_{k=-\infty}^{\infty} x(k) h(nM-k) \\ k=-\infty \end{cases}$ $k = -\infty$ $\sum_{k=-\infty}^{\infty} x(k) h(nM-kL)$ $\sum_{k=-\infty}^{\infty} x(k) h(nM-kL)$ M- fold M fold L decimator

The systems (a) & (b) are equivalent if L and Theorem: M are relatively prime. i.e., gcd (L, M) = 1 $Y_{1}(z) = \frac{1}{M} \sum_{k=x}^{M-1} X(z^{k})$ Shetch $Y_2(z) = \frac{1}{N} \sum_{m=1}^{M-1} X(z^{L/m} \omega_m^{kL})$ Claim: The set of numbers $S_1 = \begin{cases} w_{M} \\ w_{N} \end{cases}$ distinct M^{th} roots of w_{N} . W.) $S_2 = \begin{cases} w_{M} \\ y_{N} \end{cases}$ $0 \leq k \leq M-1$ is equal iff gcd(L, M) = 1

Noble identities y, (m) G, (z) = -> G(2^m) > JM = y2 (m) $\frac{g_{2}(n)}{g_{3}(2)} = \frac{1}{2} \frac{f_{3}(n)}{g_{4}(n)}$ Pathological Case: Suppose G(2) is irrational i.e., $G(2) = \frac{-\frac{1}{2}}{2}$ If x(n) is such that x(2n) = 0 M = 2 y(n) is not zero for all n; y(n) = 0 + n

Proof: (Non. irrational case)

$$\frac{1}{(a)} Y_{2}(2) = \frac{1}{M} \sum_{k=0}^{M-1} \chi(2^{\frac{1}{M}} \omega_{M}^{k}) G(2^{\frac{1}{M}} \omega_{M}$$

(4)
$$111/4$$
 $Y_{4}(2) = G_{3}(2^{L}) \times (2^{L}) - G_{3}(2^{L}) \times (2^{L}) - G_{3}(2^{L}) \times (2^{L}) + G_{3}(2^{L}) \times (2^{L}) + G_{3}(2^{L}) \times (2^{L}) + G_{3}(2^{L}) \times (2^{L}) \times ($

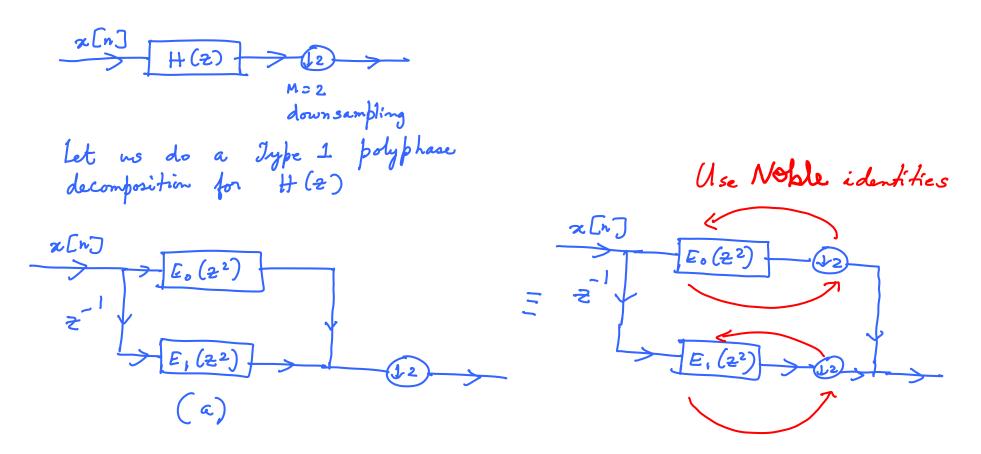
	Polyph	ase Represe	ntation	
Inventor: B	ellanger	1976	,	
I dea: Create efficient	a set of a	lower order g ultinate opera	Lilters t	tat work
Basic Idea:	H(2) =	51(~)	2	
Sep	nate 4 (2) 5 h (2n) 2	n=-a into even	and 5	dd coeffs.
H(2) = ?	ラ h (2n) を -®	+ 2	n=-0	2741) 3

Let
$$E_{n}(2) = \sum_{n=-\infty}^{\infty} h(2n) 2^{-n}$$
 $E_{1}(2) = \sum_{n=-\infty}^{\infty} h(2n+1) 2^{-n}$
 $E_{1}(2) = E_{1}(2^{2}) + 2^{-1} E_{1}(2^{2})$

H(2) = $E_{1}(2^{2}) + 2^{-1} E_{1}(2^{2})$

Example: Suppose $2^{-1} + 2^{-1} + 3 + 2^{-2} + 4 + 2^{-3} = 2^{-1} + 4 + 2^{-1} = 2^{-1} + 4 + 2^{-1} = 2^{-1} + 4 + 2^{-1} = 2^{-1} + 4 + 2^{-1} = 2^{-1} + 4 + 2^{-1} = 2^{-1} + 4 + 2^{-1} = 2^{-1} + 4 + 2^{-1} = 2^{-1} + 4 + 2^{-1} = 2^{-1} = 2^{-1} + 4 + 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1$

Having seen the basic trick, we would like to this idea for any integer M.


$$H(2) = \sum_{n=-\infty}^{\infty} h(nM) \frac{2}{2}^{-nM}$$

$$+ \frac{1}{2!} \sum_{n=-\infty}^{\infty} h(nM+1) \frac{2}{2}^{-nM}$$

$$+ \frac{1}{2!} \sum_{n=-\infty}^{\infty} h(nM+M-1) \frac{2}{2!}^{-nM}$$

$$+ \frac{1}{2!} \sum_{n=-\infty}^{\infty} h(nM+M-1) \frac{2}{2!}^{-nM}$$
This can be compatly written as
$$H(2) = \sum_{n=-\infty}^{\infty} \frac{1}{2!} \frac{1}{2!}$$

Efficient structures for decimation & interpolation filters

Post application of Noble Identifies $\frac{\chi(n)}{z^{-1}} \rightarrow \frac{12}{z} \rightarrow \frac{E_0(z)}{E_1(z)} \rightarrow \frac{12}{z} \rightarrow \frac{E_0(z)}{z}$ In the ofracture (a), because of down sampling, we consider only even numbered samples. During odd instants of time, the unit is just resting =) in efficient resource utilization Consider structure (b): Suppose no and n_1 are the orders of $E_0(2)$ On sider structure (b): Suppose no and n_1 are the orders of $E_0(2)$ and $E_1(2)$ N+1 = no+n, +2 The multipliers & adders in each of $E_{\ell}(z)$ $\ell=0,1$ have 2 units of time for doing their job & continuously operative. (No resting time)

Interpolation Juliers

 $\chi(n)$ $\uparrow L$ $\downarrow H(z)$ $\downarrow \chi(n)$ Clearly a direct implement of a filter post upsampling is inefficient because at least 50% of the time (L=2) We are filtering zeros. The multipliers not resting" must can plete the job in 1 the time because o/p of the delay elements will change with time.

Using type 2 polyphase decomposition, $f(z) = R_1(z^2) + z^{-1} R_0(z^2)$ R(2) l=0, 1 are perating at the i/p rate push @ inside multiplier is resting Structure for interpolation filters

Linear Phase FIR decimation filters Let us suppose 4+(2) = 5h(n) = 5nd thatLet us investigate how symmetry in h(n) reflects into the polyphase components. h(n) = h(N-n). Example: (a) Let N=4 H(z)= 1+2=1+4=2+2=3+2-4 2 phase de composition 2 | Each of the poly phase component filters are symmetric. $E_0(2) = 1 + 42^{-1} + 2^{-2}$ $E_1(2) = 2 + 22^{-1}$

Exercise: Devise an efficient architecture to exploit the mirror Symmetric properties of polyphase components in decimation & interpolation filters.