





# Power optimization using energy disaggregation

Team name: Door Number - 311

#### What's in the box?

- Majority of existing power optimization solutions are invasive not scalable.
- Studies have shown that energy breakdown and consumer awareness can save 15% wastage in energy all over the world\*
- We are solving this problem by disaggregating energy of individual devices.
- Providing analytics as a service solution resulting in power optimization.

**FORGE** 



#### System diagram





#### Hackware Hardware

- Low-cost, small-form factor device which is installed in the residential buildings to capture apparent power.
- Non Invasive solution.
- Using the module, we have acquired data for different combinations of appliances.





Data Acquisition of bulb and vacuum pump with multiple combinations.

#### Machines can learn - Device Classification

- Classification of individual devices using LSTM neural networks.
- A simple one-layer LSTM was used to classify three devices.
- Accuracy is around 74%.
- Training data size is 4045 and test data size is 1013.
- The model size is 32KB.

```
6s - loss: 0.3297 - accuracy: 0.8088 - val loss: 0.8386 - val accuracy: 0.7655
- 5s - loss: 0.3297 - accuracy: 0.8021 - val loss: 0.9773 - val accuracy: 0.7329
  6s - loss: 0.3264 - accuracy: 0.8085 - val loss: 0.9943 - val accuracy: 0.7177
 - 6s - loss: 0.3268 - accuracy: 0.8043 - val loss: 1.0176 - val accuracy: 0.7256
  5s - loss: 0.3240 - accuracy: 0.8056 - val loss: 1.1623 - val accuracy: 0.6584
 - 5s - loss: 0.3143 - accuracy: 0.8154 - val loss: 1.1466 - val accuracy: 0.6607
 - 6s - loss: 0.3246 - accuracy: 0.8094 - val loss: 1.1378 - val accuracy: 0.6607
 6s - loss: 0.3216 - accuracy: 0.8052 - val_loss: 0.9967 - val_accuracy: 0.7431
- 5s - loss: 0.3270 - accuracy: 0.8056 - val loss: 1.0165 - val accuracy: 0.6868
 5s - loss: 0.3165 - accuracy: 0.8154 - val_loss: 1.2722 - val_accuracy: 0.6337
 6s - loss: 0.3166 - accuracy: 0.8106 - val loss: 1.1915 - val accuracy: 0.6528
.
6s - loss: 0.3131 - accuracy: 0.8128 - val_loss: 1.4011 - val_accuracy: 0.6357
 - 6s - loss: 0.3283 - accuracy: 0.7998 - val loss: 1.1699 - val accuracy: 0.6558
- 5s - loss: 0.3139 - accuracy: 0.8089 - val_loss: 0.9374 - val_accuracy: 0.7339
- 5s - loss: 0.3223 - accuracy: 0.8082 - val loss: 1.3483 - val accuracy: 0.6337
- 5s - loss: 0.3223 - accuracy: 0.8043 - val_loss: 1.1165 - val_accuracy: 0.7398
Epoch 98/100
 5s - loss: 0.3113 - accuracy: 0.8103 - val loss: 1.4016 - val accuracy: 0.6337
.
- 5s - loss: 0.3271 - accuracy: 0.8030 - val_loss: 1.0619 - val_accuracy: 0.6993
  6s - loss: 0.3131 - accuracy: 0.8100 - val loss: 1.3721 - val accuracy: 0.6403
```

## Machines can learn - Energy Disaggregation

Segregation of individual appliances on simulations.

Aggregated power readings



## Machines can learn - Energy Disaggregation

Segregation of washing machine on simulations.

Ground truth readings

Predicted values





Time

### Machines can learn - Energy Disaggregation

Segregation of kettle on simulations.

Ground truth readings



Predicted values



Time

#### Machines can learn - Data Analytics

- Classified and segregated data opens door to data analytics for power optimization.
- Per device, inter-device, inter-time, inter-house analytics can be performed.



#### Machines can learn - Data Analytics







#### Machines can learn - Data Analytics





Time

#### Thor is worthy, so is our solution

- No tapping of wires to measure current. It's non-invasive and safe.
- Power saving by only having a single device which can be scalable across building.
- Health monitoring of appliances. This will save the power in small scale industries, for example - faulty machines can be detected which are not working efficiently while consuming the same power as normal machines.
- Giving feedback to the consumers about the daily localized power consumption.
- This system can be doable on the edge



# DEMO!

# THANK YOU!