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Abstract—This paper introduces a novel implementation of
the low-power analog artificial neural network (ANN) using
Multiple Input Floating Gate MOS (MIFGMOS) transistor for
machine learning applications. The number of inputs to a neuron
in an ANN is the major bottleneck in building a large scale
analog system. The proposed MIFGMOS transistor enables to
build a large scale system by combining multiple inputs in
a single transistor with a small silicon footprint. Here, we
show the MIFGMOS based implementation of the Extreme
Learning Machine (ELM) architecture using the receptive field
approach with transistor operating in the sub-threshold region.
The MIFGMOS produces output current as a function of the
weighted combination of the voltage applied to its gate terminals.
In the ELM architecture, the weights between the input and the
hidden layer are random and this allows exploiting the random
device mismatch due to the fabrication process, for building
Integrated Circuits (IC) based on ELM architecture. Thus, we
use implicit random weights present due to device mismatch, and
there is no need to store the input weights. We have verified our
architecture using circuit simulations on regression and various
classification problems such as on the MNIST data-set and a
few UCI data-sets. The proposed MIFGMOS enables combining
multiple inputs in a single transistor and will thus pave the way
to build large scale deep learning neural networks.

Index Terms—MIFGMOS, Sub-threshold region, ELM

I. INTRODUCTION

Recent years have witnessed the hardware implementa-
tion of various machine learning algorithms for their ease
of exploiting random device mismatches to overcome the
complexity of software computations [1] [2] [3]. These hard-
ware implementations enable the deployment of deep neural
networks (DNN) for tasks of high complexity such as image
classification, pattern recognition and object detection, but
this ease of computation comes at the cost of a trade-off
between low power and computation capability. Out of various
architectures that supports DNNs, such as CPU, GPU, FPGA,
and ASIC, realization in the analog domain is preferred owing
to benefits of compactness and low power. In the analog
context, Floating Gate Metal Oxide Semiconductor (FGMOS)
devices have demonstrated the capability of low-power analog
computation and the possibility of uses in the neuromorphic
circuits. These have been used in a wide range of circuit
applications related to learning and interfering, such as in
an activation function generator [4], neuron modelling [5]
[6], competitive learning system [7], implementation of a
neuromorphic learning algorithm [8], pattern classification
problem [9], and implementation of an online unsupervised
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Fig. 1: Local receptive fields based feedforward neural
network.

deep learning system [10]. However, all these implementations
can further be improved by using the multi-input variant of
the FGMOS, which works in the same way as the FGMOS
does but having multiple inputs. An earlier work [11] in-
troduces a trainable analog block (TAB) which operates in
the sub-threshold region and exploits device mismatches for
computation. The TAB uses an additional circuit, referred
to as the Weighted Average Circuit (WAC), for summation
of inputs. As an extension to this work, the die size can
be reduced considerably by using a multiple-input floating-
gate MOS (MIFGMOS), which because of taking a weighted
summation of its inputs can act as a single unit for exhibiting
random oxide thickness as input weights and producing an
output current as activation when being a part of a differential
pair.

The key idea of Extreme Learning Machine (ELM) [12]
that the input layer weights and hidden layer parameters need
not required to be tuned is well suited for our arrangement.
This eliminates the need of storage units for input layer
weights. Our work is novel in that a hidden layer neuron
is realized by a MIFGMOS differential amplifier, which acts
as a single unit for taking inputs, calculating their weighted
sum, and producing a corresponding output current that serves
as an activation function. The full architecture of the ELM
was simulated using the Cadence analog design environment



on 65nm CMOS technology, with output weights having a
resolution of 8-bits, to validate the system’s ability to perform
regression and classification.

II. THEORY & NETWORK ARCHITECTURE

A. Extreme Learning Machine (ELM)

The system (Figure (1)) implements the following equation
of the ELM algorithm [12].

mki = z(xk.w
(1)
i + bi) i = 1, · · · ,M (1)

where mki is the output of the ith hidden layer neuron for
the kth sample, z(x) is the neuron’s activation function and is
kept same for all M neurons, w(1)

i ∈ RL is the vector of the
weights connecting inputs of size L to the ith hidden layer
neuron and bi is the bias to the ith hidden layer neuron. xk

is the input to the network where k denotes the kth sample.
The activation function of our system is Sigmoid, as shown in
equation below.

z(gi) =
1

1 + e−gi
. (2)

Here, instead of having full connectivity between the input
and hidden layer, we have shown local receptive fields based
connectivity, which captures local correlation to map the input
to higher dimensional space [13]. The output of the network
for xk is yk ∈ RN , the jth component of which is

ykj =

M∑
n=1

mknw
(2)
jn (3)

where mkn is the output of the nth neuron as in equation (1)
, w(2)

jn is the output weight connecting the nth hidden layer
neuron to the jth output layer neuron. For C distinct samples,
there are C ×N equations of the form of equation (4). These
equations can be written compactly as

HW (2) = Y (4)

where
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w(2)
k is M × 1 vector of weights connecting the kth output

layer neuron to the hidden layer neurons.
Calculation of output weights in the ELM is solving a

generalized linear problem [14], as given in equation (4),
where H is the output of the hidden layer, W (2) is the weight
matrix connecting the hidden layer to the output layer and Y is
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Fig. 2: A multiple input floating gate MOS (MIFGMOS).
The value of Ci depends on the respective gate size.

the output matrix. Solving this problem is equivalent to finding
the W

(2)
0 achieving the minimum of the following least-square

problem. ∣∣∣∣∣∣HW
(2)
0 − Y

∣∣∣∣∣∣ = min
W (2)

∣∣∣∣∣∣HW (2) − Y
∣∣∣∣∣∣

Out of all the solutions to this least square problem, the one
which gives the smallest norm is the following unique solution.

W̃
(2)
0 = H†Y

where H† is the Moore-Penrose inverse of H .

B. Multiple Input Floating Gate MOS (MIFGMOS)
Figure (1) shows the inputs to the hidden layer neurons

via local receptive fields [13]. In theory all the inputs can be
connected to a hidden layer neuron but here the MIFGMOS (
Figure 2) poses a restriction on the number of inputs that can
be connected to a hidden layer neuron. The MIFGMOS that we
used has a maximum of 9 inputs which can take connections
from a receptive field of size 3 × 3. A MIFGMOS [5] [15]
calculates a weighted summation of its inputs in the following
way [16].

VFG =

(
QFG + CFGDVD + CFGSVS + CFGBVB +

∑n
i=1 CiVGi

)
CTotal

(5)
where,

CTotal = CFGD + CFGS + CFGB +

n∑
i=1

Ci

FG denotes the floating gate. D,S,B, and Gi denote drain,
source, body, and gate terminals respectively, n denotes the number
of gate terminals. QFG is the charge on the floating gate. Rest of the
symbols have their usual meaning.

These gate terminals can be thought of as inputs to a particular
hidden layer neuron. The capacitive coupling factor Ci, which shows
the relative strength by which the ith gate terminal affects the
potential of the floating gate, is the input layer weight and is random
in nature because of the fabrication process. The MIFGMOS that we
incorporated is based on the UC Berkeley BSIM6 Verilog-A model.

III. CIRCUIT IMPLEMENTATION

A. Neuron Block
The circuit that we employed to get a Sigmoid activation is the

MIFGMOS differential pair [16] as shown in Figure (3). This circuit
when biased in the sub-threshold region with vDS > 5VT for each
transistor, where VT is the thermal voltage, gives the following
approximate expression for the drain currents ID1 and ID2.

ID1 =
Ibias

1 + exp[−(VFG − Vref )/ηVT ]
(6)
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Fig. 3: Schematic of a neuron block based on MIFGMOS
differential pair.

ID2 =
Ibias

1 + exp[−(Vref − VFG)/ηVT ]
(7)

where VFG is as defined in equation (5). η is the sub-threshold slope
factor. Ibias is the biasing current which is copied from Iref by means
of a high swing current mirror formed by M1,M2,M3 and M4.
Vbias biases the gate voltage of M1 & M2 for the proper operation
of the current mirror. The diode connected MOS P1 and P2 are
the current source loads. The current ID1 is mirrored by a current
mirror formed by P1 and P3 to Iout which is the output of a neuron.
The form of equation (6) is similar to the Sigmoid function (eqation
(2)) with scaling and shifting. The parameter Vref is the systematic
offset which gives additional variability among activations of neurons
in case there is not enough random mismatch [17]. The output of a
hidden layer neuron block is shown in Figure (4).

The Figure (4) shows the activation of a neuron for all gate
terminals as their voltage is varied one at a time with random coupling
capacitance thickness, which is a configurable parameter of our setup.
The heterogeneity among activations with respect to different gate
terminals is evident from the figure. These activations act as a random
basis covering the whole input space, which helps to create non-linear
classification boundary and learning non-linear regression function.

B. Output Weight Block
The output synaptic weights are realized by an 8-bits M-2M Digital

to Analog Converter (DAC) [18] [19] [20]. A 3-bit version of this
DAC is shown in Figure (6) for clarity. In the ELM architecture,
there is full connectivity between the hidden layer neurons and output
neurons in conjunction with the fact that the output layer neurons are
linear. The number of output weight blocks are M × N . The input
current Iin shown in the figure is the output of a hidden layer neuron
block, as shown in Figure (3). This DAC reduces the input current by
a constant factor in each successive branch and the current in each

Fig. 4: Activation of a single neuron block for different gate
voltages over random weights. Only one gate voltage is

varying at a time.

branch is routed to either Iretain or Idump depending on whether its
weight bit is high or low. The current Iretain is copied via a current
mirror and is further routed either via transistor Mpos or Mneg , out of
both transistors, only one is active at a time depending on the value of
the sign bit, which corresponds to the value of weight being positive
or negative, and hence changes the direction of current accordingly.
The current Idump is dumped to the ground by passing it through a
diode-connected MOS so that the impedance that Iretain & Idump

sees are the same, and hence a better accuracy is achieved. The gate
of transistors of the upper part of the DAC (denoted as N) is biased
by a master bias voltage [21]. Since its output current magnitude is
always less or equal than the magnitude of the input current it is
necessary to have output weights confined to [-1,1] and being taken
care in offline learning process. We have employed an 8-bit DAC,
which realizes 255 different current levels and an additional bit for
sign of the weights.

IV. RESULTS

The number of connections to a hidden layer neuron are config-
urable to a maximum of nine which is a degree of freedom facilitated
by our model, but can be scaled in the future model. We have tested
the system for two-dimensional regression, binary classification, and
MNIST [22] digit recognition problem. For regression two inputs
instantiation of 100 neuron blocks, each cascaded with M-2M DAC
were used. The activations were collected in the simulator, and
the output weights were calculated off the simulator. These output
weights were then stored by means of 8-bit shift register, outputs of
which are inputs to the M-2M DAC, labelled as wti, i = 1, · · · , 8 in

Fig. 5: Activations of 50 neuron blocks. These neuron blocks
are two inputs instantiation of circuit of Figure (3).
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Fig. 6: Current mode M-2M DAC.

Figure (6). The system is able to learn two-variable algebraic function
such as cubic x3 + y3 with an error percentage of 1.69%, the results
of which are shown in Figure (7). Here, error is defined as the ratio of
RMS value of the difference between the target and learnt function,
and the RMS value of the target function.

The ability of our system to perform classification was tested using
small data-sets chosen from the UCI machine learning repository. The
circuit simulation results are shown in Table (I) along with the soft-
ware simulation results. The two data-sets, Banknote Authentication
and Pima Indians Diabetes, have different feature sizes for which
different inputs instance of MIFGMOS were used.

Fig. 7: Regression on x3 + y3 for 100 neuron blocks.

Finally, we implemented the system against a binary version of
the handwritten digit database MNIST where pixel values above and
below a certain threshold were mapped to one and zero, respectively.
The resulting images were fed to the network in a convolutional
neural network (CNN) manner, where the size of the receptive field
is 3×3 owing to the maximum number of inputs to the hidden layer
neurons being nine. The weights of all the fields were random and
distinct. For this implementation, we simulated the system with 676
hidden layer neurons at a time, without using the output weight block

Database Training
(Simulator)

Testing
(Simulator)

Training
(Software)

Testing
(Software)

Banknote
Authentication 71.83 70.23 74.45 73.86

Pima Indians
Diabetes 84.76 82.58 89.62 87.93

TABLE I: Accuracy over binary databases (in %) for 100
neuron blocks.
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Fig. 8: Accuracy of the system with the binary MNIST
dataset.

in the simulator because of limitation on the simulation environment.
All the simulations with 676 neurons were simulated with distinct
random weights. The accuracy of the system for the different number
of hidden layer neurons in multiples of 676 is shown in the Figure
(8).

V. CONCLUSION

We presented a novel method to realizing the ELM in the analog
domain by employing the MIFGMOS, which utilizes mismatches to
perform computations. The MIFGMOS is a substantial improvement
over the previous work [11] [23] in terms of optimizing the die
area because it obviates the need of using Weighted Average Circuit
(WAC) for performing weighted summation of inputs. This incorpo-
ration of an MIFGMOS based neuron has an additional advantage of
realizing a large number of neuron blocks because ELM requires a
large number of hidden layer neurons relative to sample size for
effective computation that gives better accuracy. This along with
the fact that analog domain implementation facilitates low power
consumption is an additional edge. Our software simulations are
performed on 65nm technology, which aids heterogeneity among
neuronal curves even further. The diversity among neuronal curves
is a serious concern where there is a limitation on the die area. In
that case, an upper limit on the number of hidden layer neurons
requires the variance among the input layer weights to be as large
as possible. This can not always be guaranteed because there is an
upper and lower bound on oxide thickness which manifests itself as
input weights. In that case, a deliberate offset between the reference
voltage and bias current of neuron block would serve as an additional
parameter of variation.

The ability of system to perform regression and classification is
also presented. The accuracy of the system on the MNIST data-set
shows that the system is able to perform image classification tasks
quite efficiently. With as little as 676 neurons which is less than the
feature size of the input (784), the accuracy is greater than 84%. This
system thus provides a favorable alternative for image classification
tasks, on account of its small size, cost efficiency and better accuracy
(on account of large number of input layer connections).
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